
T E C H N O L O G Y I N A C T I O N ™

Commercial and
Industrial Internet of
Things Applications
with the Raspberry Pi

Prototyping IoT Solutions
—
Ioana Culic
Alexandru Radovici
Cristian Rusu

www.allitebooks.com

http://www.allitebooks.org

Commercial and
Industrial Internet of
Things Applications

with the Raspberry Pi
Prototyping IoT Solutions

Ioana Culic
Alexandru Radovici
Cristian Rusu

www.allitebooks.com

http://www.allitebooks.org

Commercial and Industrial Internet of Things Applications with the
Raspberry Pi: Prototyping IoT Solutions

ISBN-13 (pbk): 978-1-4842-5295-6		 ISBN-13 (electronic): 978-1-4842-5296-3
https://doi.org/10.1007/978-1-4842-5296-3

Copyright © 2020 by Ioana Culic; Alexandru Radovici; Cristian Rusu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5295-6. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Ioana Culic
Bucharest, Romania

Alexandru Radovici
Bucharest, Romania

Cristian Rusu
Bucharest, Romania

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5296-3
http://www.allitebooks.org

iii

About the Authors���ix

About the Technical Reviewer��xi

Introduction��xiii

Table of Contents

Chapter 1: Internet of Things Systems Overview����������������������������������1

What Is the Industrial IoT?���1

The IoT Characteristics���3

The IoT Architecture���6

The IIoT Systems��8

About SCADA��10

From Prototyping to Industrial Systems���12

Specific IIoT Characteristics���14

Edge Computing���16

The Raspberry Pi As an Edge Device��17

The Raspberry Pi in Industry��19

IoT Communication Protocols��22

Low-Level Data Transmission Protocols���22

Application-Level Protocols��26

Interfacing with the IoT System���28

User Interface���28

Physical Controls��30

Platform Interface���30

www.allitebooks.com

http://www.allitebooks.org

iv

Software for IoT Systems���32

Software Characteristics��32

Software Development���34

Summary���39

Further Reading���40

Chapter 2: Getting Started with the Raspberry Pi and
Wyliodrin STUDIO���45

About the Raspberry Pi��47

About Wyliodrin STUDIO���50

Run Wyliodrin STUDIO��52

Run Wyliodrin STUDIO Locally��52

Run Wyliodrin STUDIO in the Browser��53

Connect the Raspberry Pi to Wyliodrin STUDIO��53

Manual Setup���55

Connect the Raspberry Pi to the Local Version of Wyliodrin STUDIO��������������56

Connect the Raspberry Pi to Browser Version of Wyliodrin STUDIO���������������57

Overview of Wyliodrin STUDIO���60

Deploy Applications on the Raspberry Pi���62

Summary���67

Chapter 3: Smart Digital Signage System���69

Necessary Components���70

The Application Architecture��71

Electron��72

The Application��73

Source Code���73

Installing the Necessary Libraries��79

Run the Application��81

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Connect to the Internet���83

Arrange the Interface���90

Summary���94

Chapter 4: Smart Soda Dispenser System���95

Necessary Components���96

Interactive Soda Dispenser��98

The main.js File��98

The User Interface��99

Install Required Modules��107

Building the Dispenser���109

The Schematic��109

The Application���111

Installing the Modules��113

Connecting the System to the Internet��113

Set Up Ubidots Account��114

Initialize Widget Values���115

Compute the Liquid Amount���117

Create the Dashboard���120

Summary���123

Chapter 5: Smart Advertising System���125

Necessary Components���127

Gathering Surrounding Information���128

Connect the Camera Module��129

Enable the Camera���130

The Code���131

Table of ContentsTable of Contents

vi

Personalize the Content���137

Set Up Microsoft Cognitive Services Account���137

Process the Picture��140

Personalize the Content��142

Remotely Update Source Pictures���145

Create a Google Service Account���145

Upload Files on Google Drive��148

Integrate Google Drive API in the Application���150

Connect USB Camera���155

Monitor the Environment���156

Summary���161

Chapter 6: Smart Metering System Using an Industrial Server���������163

Industrial Applications Architecture���164

Necessary Components���166

The Smart Power Plug Interface��167

Set Up the HS110 Smart Power Plug Using the Kasa App����������������������������169

Set Up the HS110 Smart Power Plug Using the Python SDK������������������������169

Write the Power Plug Driver���176

The OPC UA Server���181

OPC UA Variables��184

The OPC UA Server���185

OPC UA Commander���189

ProSys OPC UA Client���191

The Smart Power Plug Driver���193

Write the Energy Values��194

Switch the Power Plug On and Off���201

Putting It All Together���205

Summary���207

Table of ContentsTable of Contents

vii

Chapter 7: Data Storing and Processing��209

Necessary Components���210

Use MariaDB to Store Data��211

Install MariaDB���213

External Storage Setup���214

Set Up the Data Model��223

Upgrade to Use Multiple Smart Plugs��228

The OPC UA Data Model���229

The New Smart Plug Driver��234

Store the Information in the Database���249

Summary���264

Chapter 8: Data Plotting��265

Necessary Components���266

Getting Started���266

Install Docker���267

Install Grafana��269

Add the MariaDB Data Source��274

The Dashboard���277

Summary���285

Index��287

Table of ContentsTable of Contents

ix

About the Authors

Ioana Culic is currently a PhD candidate in the field of Internet of Things

and the cofounder of Wyliodrin, a company that offers educational and

industrial IoT solutions. She is a Teaching Assistant at the Politehnica

University of Bucharest, Romania, and has also been teaching IoT

technologies to high school and university students at different events

for the last 5 years. Despite the technical background, writing has always

been Ioana’s passion and she managed to mix the two. She has published

several articles in magazines such as the MagPi and Make: and books on

Internet of Things technologies.

Alexandru Radovici has a PhD in the field of mobile computing and

works as an Assistant Professor at the Politehnica University of Bucharest,

Romania, teaching subjects related to operating systems, compilers, and

Internet of Things. Alexandru believes in the power of education and

teaching is his passion, so 14 years ago he founded an NGO that focuses

on organizing IT educational events. Alexandru is also the cofounder and

CTO of Wyliodrin, being in touch with the latest IoT technologies.

Cristian Rusu received his MSc and PhD from the Politehnica University

of Bucharest, Romania, in 2011 and 2012, respectively. He is currently

a postdoctoral researcher with the Istituto Italiano di Tecnologia (IIT),

Genoa, Italy, working on machine learning and big data, and their

applications to real-world problems. His research interests include

computer science and signal processing with applications to wireless

communications, sparse representations, dictionary learning, machine

learning, and numerical linear algebra. In the context of wireless

communications, his interests focus on MIMO systems, mmWave, and

UAV communication.

xi

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer, working for an industrial

gases company in Buffalo, New York. His interests, deeply rooted in DIY

and open source hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother, and in his

spare time he likes to contribute to build things that improve quality of life.

You can find his project portfolio at http://saiyamanoor.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__saiyamanoor.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=XnS36DAEF2AJNAgdQVt3Udw3zJxHjAlGZxueTpbVaE4&s=bNX8CY93lJm-jjfZ643KcRLONwzXHQQrMMP4GS_i2ho&e=

xiii

Introduction

During the last couple of years, the Internet of Things (IoT) has become a

mature technology with applications both in the industrial and consumer

markets. The IoT revolution promises to create ambient intelligence by

connecting all the devices and objects around us and enabling them to

adapt and behave following people’s needs. A simple example would be a

scenario in which the alarm clock is aware of the meeting you have at 9:00

AM and by taking into account the traffic conditions, it wakes you up at

an appropriate hour, without you having to set it up the previous evening.

Also, the coffee machine has already the coffee prepared for you, and other

arrangements for the day are taken into consideration. While this scenario

is still to be achieved, many technological advancements have been made

in this direction. The result is a wide range of embedded hardware devices,

various communication protocols with an accent on efficiency and security,

and plenty of software platforms designed to manage all these resources.

One of the most popular hardware platforms for prototyping IoT

applications is the Raspberry Pi. Hobbyists and students everywhere have

been integrating it into IoT projects since 2012, when the first version was

released. From controlling home lights to automatically feeding your pet,

the Pi is present in many people’s homes. However, few people think of it

as something more than a prototyping or educational platform.

The purpose of this book is to give you a new perspective on how the

Raspberry Pi can be used by integrating it into commercial or industrial

applications that can be easily scaled and deployed as products.

Throughout the book, we will guide you through a series of practical

examples that use the Raspberry Pi as the core around which fully

developed products are built. We hope that after you follow all the

xiv

examples, you will have a different view of how the Raspberry Pi or other

similar devices can be used and have a complete perspective on how to

move from prototyping a home device to building a fully scalable and

marketable product.

�Who This Book Is For
The book targets people passionate about building Internet of Things

systems: from hobbyists to entrepreneurs, especially those who would

like to start a business in this area. The notions presented are accessible

to any person who has had some contact with the Raspberry Pi or some

similar device and understands basic pin control operations. Some web

development (HTTP and JavaScript/jQuery/Vue.js/Angular.js) experience

is welcomed as this can help understand the presented concepts quicker.

However, the projects are detailed step by step, so anybody with a basic

understanding of programming can follow them. The final goal is to obtain

several working IoT prototypes.

�Technologies Used
All the chapters that describe applications are structured in a manner

that outlines the necessary components of any successful IoT system: the

hardware components, the software platform, and the connection to other

devices and the Internet.

For the hardware aspect, besides the description of how to build

and connect the components to the Raspberry Pi, we will also present

the full connection schematic. Each chapter will also begin with a list of

components necessary for building the project hardware.

On the software side, the applications that we build will consist of

a user interface and application logic. The two are written using HTML

and JavaScript technologies. For the User Interface (UI) control, we will

IntroductionIntroduction

xv

integrate Vue.js as a framework built for easier and faster development of

HTML-based user interfaces. To run the applications on the Raspberry Pi,

we will integrate them with the Electron framework.

The Internet connection component will be addressed by

incorporating a web API into the applications. In each chapter, we will

present a different web service (e.g., social network interaction, weather

information, or image processing) that is a vital component of the overall

system and which delivers the specific IoT flavor to the application.

�Necessary Hardware
This book aims to present the essential IoT technologies in a very practical

manner. As a result, each chapter guides the reader through building a

prototype of an IoT application, requiring specific hardware components

to be connected to the Raspberry Pi.

To help you prepare implement the applications presented throughout

the book, we created a list with the necessary hardware:

•	 Raspberry Pi

•	 HDMI display

•	 Touchscreen display

•	 3KY-019 relays or similar

•	 Three water pumps

•	 5V power source

•	 Raspberry Pi camera module or USB camera

•	 PIR motion sensor

•	 Breadboard

•	 Jumper wires

IntroductionIntroduction

xvi

•	 TP-Link HS110 Smart Power Plug (preferably two)

•	 Raspberry Pi PoE HAT (optional)

•	 A PoE (802.3af) capable network switch or PoE injector

(optional)

•	 External hard drive or SSD drive (optional, a USB 3.0

device is recommended)

To successfully implement the applications, you do not need to acquire

the same hardware components. Many of them can be replaced with other

similar hardware. This is why we recommend you do a short analysis of the

required equipment and other available options before you get started.

�Topics Covered
Chapter 1 introduces the Internet of Things field and the basic architecture

of IoT applications. We present the main characteristics of commercial and

industrial IoT systems by emphasizing the transition from prototyping to

building production applications.

Chapter 2 gives an overview of existing development environments

for building IoT systems and guides the reader through the setup process

required to connect the Raspberry Pi to Wyliodrin STUDIO.

Chapter 3 introduces basic concepts such as creating a user interface–

based IoT system and how to include the “Internet” component into your

applications. The final result is a web-based IoT platform that displays the

current weather conditions.

Chapter 4 guides the reader through building a smart soda dispenser

using HTML and Vue.js. We also emphasize the importance of remotely

monitoring the deployed systems and how we can achieve this.

IntroductionIntroduction

xvii

Chapter 5 focuses on integrating picture and video capabilities into IoT

solutions. We present the Pi Camera module and how to control it so we

can build a smart advertising system that adapts the commercials to the

current audience.

Chapter 6 introduces industrial technologies, focusing on how to

use the OPC UA protocol to control smart home systems, in our case, a

power plug.

Chapter 7 focuses on the implementation of the OPC UA industrial

communications protocol. In this case, we expand the project

implemented in Chapter 6, so data from multiple power plugs is

systematically gathered using this protocol.

Chapter 8, the final chapter, introduces open source technologies for

data plotting and visualization, by enhancing the project developed in

Chapter 7.

IntroductionIntroduction

1© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3_1

CHAPTER 1

Internet of Things
Systems Overview
In this chapter, we provide a general outline of the Internet of Things (IoT)

with a particular focus on the commercial and industrial aspects. We cover

the basic terminology and technologies surrounding the IoT, its history,

and current state of the art, including all its main components: hardware

devices, software development, and communication protocols.

�What Is the Industrial IoT?
The main idea behind the Internet of Things is to interconnect electronic

systems that can sense or interact with the environment and communicate

among themselves. While the typical examples of IoT include everyday

objects and applications, the principles of the IoT can also be applied to

commercial and industrial systems leading to better results and improved

efficiency. Therefore, as part of the IoT, we encounter the specific notion

of the Industrial Internet of Things (IIoT) referring to commercial and

industrial products.

While the industrial and consumer markets address different needs and

propose different solutions and products, when it comes to building an IoT

system, the fundamental characteristics and architectures are based on a set

of common principles. These are the principles we explore in this chapter.

2

First, let us introduce some basic definitions for the IoT and IIoT.

While there is no unique definition for the IoT (see, e.g., the IEEE “the

ever-changing definition of the IoT”1), we choose to present the following

description provided by the Internet Engineering Task Force (IETF) in

2010.

The basic idea is that IoT will connect objects around us (elec-
tronic, electrical, non-electrical) to provide seamless commu-
nication and contextual services provided by them.
Development of RFID tags, sensors, actuators, mobile phones
makes it possible to materialize IoT which interact and co-
operate each other to make the service better and accessible
anytime, from anywhere.

—Internet Engineering Task Force

We also give a description of the thing in the Internet of Things.

In the vision of IoT, “things” are very various such as comput-
ers, sensors, people, actuators, refrigerators, TVs, vehicles,
mobile phones, clothes, food, medicines, books, etc. These
things are classified as three scopes: people, machine (for
example, sensor, actuator, etc.) and information (for example,
clothes, food, medicine, books, etc.). These “things” should be
identified at least by one unique way of identification for the
capability of addressing and communicating with each other
and verifying their identities. In here, if the “thing” is identi-
fied, we call it the “object.”

—Internet Engineering Task Force

1�https://iot.ieee.org/definition.html

Chapter 1 Internet of Things Systems Overview

https://iot.ieee.org/definition.html

3

When it comes to the IIoT, we choose the description by HP.2

The IIoT consists of internet-connected machinery and the
advanced analytics platforms that process the data they produce.
IIoT devices range from tiny environmental sensors to complex
industrial robots. While the word “industrial” may call to mind
warehouses, shipyards and factory floors, IIoT technologies hold
a lot of promise for a diverse range of industries, including agri-
culture, healthcare, financial services, retail, and advertising.

The Industrial Internet of Things is a subcategory of the
Internet of Things, which also includes consumer-facing appli-
cations such as wearable devices, smart home technology, and
self-driving cars. Sensor-embedded devices, machines, and
infrastructure that transmit data via the Internet and are
managed by software are the hallmark of both concepts.

—HP

�The IoT Characteristics
Given these basic definitions, let us now discuss some essential

characteristics of the IoT. The focus of an IoT system falls on the things on

top of which it is built. Any IoT solution aims to bring intelligence to already

existing objects/devices and enable them to behave autonomously. The

intelligence of such a solution is based on sensing and action, connectivity,

collection of large amounts of data, and processing and storage capabilities,

resulting in the following essential characteristics of an IoT system:

•	 Connectivity – This is the basis of any IoT solution;

sensors are connected between them selves and to

devices; devices are connected to each other and to the

Internet; be it at a local or a global level, the capacity to

exchange data is the driving force behind the IoT.

2�www.hpe.com/emea_europe/en/what-is/industrial-iot.html

Chapter 1 Internet of Things Systems Overview

http://www.hpe.com/emea_europe/en/what-is/industrial-iot.html

4

•	 Management of the things – The purpose of any IoT

device is to sense and interact with the environment,

and this can be done only through physical objects,

which we generically call things.

•	 Heterogeneity –The IoT ecosystem is built on top of

various hardware devices, network infrastructures,

and processing platforms that need to exchange

information and act toward a common goal.

•	 Data collection – The intelligence of the IoT systems

is based on the data that sensors gather; this data is

processed, and then the data is converted to actionable

information.

•	 Dynamism – The IoT infrastructures are changing

continuously, networks adjust parameters dynamically,

sensors can connect and disconnect, devices can enter

idle, awake, or sleep modes, and the systems need to

maintain their correct behavior, independent of the

occurring changes in the environment.

•	 Large-scale – As of 2020, the number of devices

connected to the Internet is approximated to reach

20 billion,3 and it increases at an exponential rate;

this requires infrastructure and platforms capable of

managing such a high number of connections.

3�www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-
8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-
from-2016

Chapter 1 Internet of Things Systems Overview

http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016

5

•	 Autonomy – Many of the intelligent devices designed

are meant to be deployed in remote places; in this case,

the devices have to make decisions without human

intervention while they might not have access to a

continuous power source, depending on batteries or

alternative sources of energy. Simultaneously these

devices need to be remotely monitored, controlled and

even updated or repaired.

•	 Privacy and security – These are one of the biggest

concerns regarding the IoT. Connecting heating

systems or health devices to the Internet exposes them

to significant risks; gaining compromising or malicious

control over such a system can have disastrous

consequences. Equally important, the IoT users need

to understand (and agree) what data is collected at all

times.

Consider an IoT smart building system that monitors the temperature

inside the building and has access to the inhabitants’ calendars. Based

on this data, it can ensure that when people arrive or are already at home

their preferred environment temperature is set, while when they are

away, it can optimize the heating and cooling systems to reduce energy

consumption and costs. Such a system needs to interconnect temperature

sensors to Heating, Ventilation, and Air Conditioning (HVAC) systems

and also retrieve data about the inhabitants’ location. Also, for the system

to be effective, it needs to behave autonomously and uninterrupted and

ensure that data concerning the users’ behavior is securely stored and

manipulated. Since information about the location of the inhabitants has

to be available to the system, privacy and security concerns take center

stage. For example, unauthorized access to this information might tell

burglars exactly when the home is empty. We can quickly identify many of

the previously mentioned characteristics in this simple example.

Chapter 1 Internet of Things Systems Overview

6

An essential requirement for the success of the IoT is that people need to

be comfortable and secure when using new technologies. Unfortunately, IoT

technologies have also introduced new specific security concerns and risks. If

all the devices that surround us are connected to the Internet, then a security

breach might result in real-world damage to both property and humans. One

of the worst modern IoT security concerns is the use of botnets. A botnet is a

collection of devices whose security has been compromised and is used by a

third party that controls it to perform cyberattacks against a particular target.

Usually, the attacks take the form of Distributed Denial-of-Service (DDoS).

The IoT is particularly susceptible to such an attack because of the large

number of devices connected to the IoT networks. Two recent prominent

attacks were the 2016 Mirai4 and Remaiten5 botnets.

�The IoT Architecture
Generally, an IoT solution has the following behavior: it senses the

environment, analyzes the gathered data, and reacts based on the conclusions.

To better illustrate the components of a generic IoT system and the way they

interact with each other, specialists have introduced the IoT stack. Since the

IoT is still profoundly lacking standardization, there are various versions of

the stack, more or less detailed, with a focus on different aspects. Nonetheless,

from a broad perspective, most of them consist of the following components:

•	 Sensors and actuators

•	 Local processing and storage

•	 Network and Internet connection

•	 Cloud processing

4�https://securityintelligence.com/news/leaked-mirai-malware-boosts-iot-
insecurity-threat-level/

5�www.securityweek.com/new-remaiten-malware-builds-botnet-linux-based-
routers

Chapter 1 Internet of Things Systems Overview

https://securityintelligence.com/news/leaked-mirai-malware-boosts-iot-insecurity-threat-level/
https://securityintelligence.com/news/leaked-mirai-malware-boosts-iot-insecurity-threat-level/
http://www.securityweek.com/new-remaiten-malware-builds-botnet-linux-based-routers
http://www.securityweek.com/new-remaiten-malware-builds-botnet-linux-based-routers

7

Based on Figure 1-1, we notice that the sensors and actuators are

placed at the bottom of the stack, as they are the ones communicating

directly with the environment. Up the stack, we place the local processing

and storage devices, also called edge devices. These are computers such

as a Raspberry Pi, which are capable of exchanging information with

the peripherals and have minimal computing capabilities so they can

preprocess the data received from the sensors. On the upper level, edge

devices can be connected to network devices such as routers and have

access to the Internet. Finally, at the top of the stack, there is the cloud,

where large amounts of data coming from a multitude of edge devices are

stored and, with the help of machine learning and artificial intelligence

(AI), can be leveraged to reach important decisions and perform complex

analyses or predictions of future systems and human behaviors.

Figure 1-1.  The Internet of Things stack

Chapter 1 Internet of Things Systems Overview

8

�The IIoT Systems
Several industries are expected to be the biggest beneficiaries of the IoT. In

this case, we are dealing with production and assembly lines, oil wells,

photovoltaic plants, windmills, among others. While these systems have

a clearly defined purpose and behavior, producers are in constant search

for ways to increase their efficiency and reduce operational costs. It is for

this reason that the prospect of systems which can self-analyze, adapt,

and optimize based on the environment or other third-party parameters is

appealing to most industrial companies.

So far, we have explored the generic characteristics and architectures

of IoT systems. While these also apply to the IIoT platforms, it is crucial to

understand that industrial systems have specific characteristics that are

taken into account:

•	 Environment conditions – One of the main reasons for

building autonomous industrial machines is because

in many cases the working conditions in factories are

not favorable to humans as they can be exposed to

chemical substances, high temperatures, or extreme

humidity leading to long-term health problems.

•	 Costs – All companies have the goal to be as

economically efficient as possible, and therefore

the operational costs are an important decision

factor when introducing new systems or devices in

production or assembly lines.

•	 Downtime – The activities carried out in plants are

usually uninterrupted, apart from specific, limited

amounts of time when maintenance is done. Of course,

there are exceptions as systems might break down,

but in this case, any downtime may be translated into

critical financial losses.

Chapter 1 Internet of Things Systems Overview

9

Based on these characteristics, any IoT solution implemented in the

industry has to meet the following requirements:

•	 Robustness – Any industrial product has to be adapted

to the environment where it will be deployed. It needs to

withstand harsh working conditions, and this is why most

of the devices designed for industrial use are ruggedized.

•	 Stability – Having a device that behaves unusually

or breaks unexpectedly results in downtime; many

industrial devices are required to work continuously

(sometimes close to their technical limits) for

potentially long periods.

•	 Real-time – Some of the machines deployed in factories

need to respond very quickly to triggers or events

in the environment. Response times are essential to

ensure accurate readings and results and the overall

synchronization of the system resources.

A survey carried out in 2015 by Morgan Stanley and Automation World

magazine has outlined that the main incentive for the adoption of the

Industrial Internet of Things (IIoT) is the desire to improve operational

efficiency, followed by the desire to improve productivity.6

One of the first steps toward making a process more efficient and

productive is to analyze its current status and find ways to improve. This

need explains the broad adoption of IoT technologies in the industrial

market. The main characteristic of the IoT systems is that they use sensors

to gather information about the environment, making them suitable for

helping increase productivity and reduce costs. Besides the big data and

analytics aspect of the IoT, regularly monitoring industrial equipment

6�www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-
iiot-saving-costs-innovation/

Chapter 1 Internet of Things Systems Overview

http://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/
http://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/

10

using sensors can provide more accurate data compared to the measures

carried out by humans. The goal is to enable early detection of machine

deterioration and help prevent unexpected failures, reducing costs related

to maintenance and downtime.

The historical need to increase the operational efficiency of industrial

processes has led to several monitoring and control solutions being

developed, the predecessors to the current IIoT platforms.

�About SCADA
Historically, the IIoT is not the first attempt to improve and modernize the

industrial infrastructure.

Supervisory Control and Data Acquisition (SCADA) is an industrial

control system developed in the 1950s. The system is designed to be

integrated into factories’ infrastructures and enables the monitoring and

control of the industrial operations. SCADA has been used extensively

in industries such as energy, manufacturing, oil and gas, transportation,

waste management, food, and many others. Today, SCADA systems are

still in widespread use to manage traffic flow and regulate traffic lights.

Over time, SCADA systems have been continuously improved across four

technological generations: the initial monolith structure, the distributed

and networked phases, and finally their evolution to modern IIoT systems.7

SCADA systems use sensors that retrieve data such as temperature,

humidity, or vibration about the industrial machines and display it in a user

interface with the help of graphs and other visual elements. On the other

side, the system is also connected to valves, motors, pumps, and other

control mechanisms that can be managed from the same user interface

without the need for direct human intervention on the industrial machine.

Also, factory employees can design routines, so a system responds

automatically to changes in the environment. For instance, we can

7�www.engineersgarage.com/articles/scada-systems

Chapter 1 Internet of Things Systems Overview

http://www.engineersgarage.com/articles/scada-systems

11

program a machine to shut down if some system parameters (e.g.,

temperature) reaches a certain level deemed critical.

SCADA can also be deployed across large interconnected industrial

systems, leading us to the question of how is SCADA different from modern

Industrial IoT solutions?

While SCADA brings centralized monitoring and control over the

industrial platforms, it lacks the intelligence specific to IoT systems; more

precisely, it lacks the cloud component of the IoT stack. This, in turn, limits

the system to take simple, local decisions. Even worse, historically, these

decisions were made often by human operators introducing the possibility

of errors. It is for this reason that many producers of industrial IoT

platforms decide to extend the SCADA infrastructure and bring machine

learning and AI capabilities and remove human operators from the loop.

As two of the significant incidents of the twentieth century, Three Mile

Island and Chernobyl disasters also involved human operator errors, the

hope is that AI capabilities will be able to eliminate or at least drastically

reduce the future risks of such destructive events.

Also, one of the most significant disadvantages of SCADA is security, or

more precisely the lack of it. Since it was designed when platforms were not

connected to any external system, security breaches were unlikely to happen.

Today, SCADA relies on the mechanism of security through obscurity (design

and implementation secrecy), which the latest discovered vulnerabilities

such as Spectre and Meltdown prove to be inefficient. A now-infamous

security breach example is the 2010 attack called Stuxnet on Iranian

industrial facilities when attackers were able to log into the SCADA database

and steals design and control files.8 A more recent and less spectacular but

equally important example is the hacking of traffic systems in large cities.9

8�http://archive.is/20120525053210/http://www.computerworld.com/s/
article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems?tax
onomyName=Network+Security&taxonomyId=142

9�https://resources.infosecinstitute.com/hacking-traffic-light-systems

Chapter 1 Internet of Things Systems Overview

http://archive.is/20120525053210/http://www.computerworld.com/s/article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems?taxonomyName=Network+Security&taxonomyId=142
http://archive.is/20120525053210/http://www.computerworld.com/s/article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems?taxonomyName=Network+Security&taxonomyId=142
http://archive.is/20120525053210/http://www.computerworld.com/s/article/print/9185419/Siemens_Stuxnet_worm_hit_industrial_systems?taxonomyName=Network+Security&taxonomyId=142
https://resources.infosecinstitute.com/hacking-traffic-light-systems

12

�From Prototyping to Industrial Systems
The first step when building an IoT product is to prototype it, and here

we can take advantage of how popular the IoT is among the engineering,

maker, and hobbyist communities. There are plenty of IoT books,

magazines, and events dedicated to the do-it-yourself (DIY) community,

and a simple online search leads to thousands of tutorials on how to build

your connected lighting system or how to make your vacuum cleaner

smart. However, once the proof of concept is up and running, there are

a few additional aspects to be taken into account until the device can

actually be sold and even deployed in an industrial environment:

•	 Stability – It is important to ensure that the system works

without any unexpected interruptions, and if an error

occurs, the device should be able to recover without

external intervention. Although for a prototype, you can

afford to have some errors or crashes during the testing

phase, when it comes to commercial and industrial

devices, having a product that stops running can

cost your client a lot and can cost you a client. Before

releasing it into mass production, it is vital to thoroughly

test the device and consider all the possible use cases.

•	 Certifications – For a product to be sold on the market,

it has to have precise specifications and pass quality

verifications, a process called certification. After the

device passes the quality tests, it is certified to be

used in a specific region. This is because different

countries have different requirements (e.g., the Federal

Communications Commission FCC in the United

States, the European Economic Area CE marking, etc.).

Therefore, after you build the prototype, you need to

ensure that it does not consume too much energy,

Chapter 1 Internet of Things Systems Overview

13

performs accurate readings with specified uncertainty,

does not interfere with other (especially wireless)

devices also in the environment, does not emit

chemical substances in the environment, and has no

risk of exploding or harming humans.

•	 Support and warranty – Although you already tested

the device and the risk of it crashing is minimal, it still

exists. For this reason, you need to search for ways

in which you can offer support for the system you

deployed. This is not necessarily easy as you need to

search for ways to remotely diagnose the product and,

if possible, remotely repair it. This is necessary because

shipping the device back in service has high costs, and if

the device is a smart fridge, it may be impossible to ask

the customer to ship it back, so you will have to send a

technician if there is no way to fix the product remotely.

•	 Updates – Once the solution reaches the customer, you

need to provide software updates for new features and

security requirements. It would help if you assured your

clients that the product they bought would function

appropriately for a certain amount of time, and this

also implies that it is not exposed to new security

breaches. It is crucial to have the means to push the

updates remotely and ensure that there are no failures

and no risks of bricking the device.

•	 Endurance – When it comes to industrial devices,

you need to ensure they can withstand harsh working

conditions for an extended amount of time. This

implies that the components you use have to be more

resistant and finally have the whole device ruggedized,

so it is not directly exposed to the environment.

Chapter 1 Internet of Things Systems Overview

14

•	 Safety and Security – These are some of the most

important aspects of any IoT system. Both commercial

and industrial IoT platforms collect and manipulate

sensitive data and control delicate peripherals. In this

context, there are multiple aspects where a security

breach can expose users to great perils. Also, when

talking about industrial devices, the costs and the

risks are even higher (e.g., an assembly line that

stops working for 5 minutes can generate millions

of dollars in losses, secret industrial data might be

stolen). Therefore, before deploying an IoT system

into production, it is very important to keep in

mind all components and how each of them can be

viciously manipulated. While a perfectly safe system is

impossible to design, it is crucial to implement multiple

and various security mechanisms that make it very

difficult for a malicious person to take control over it.

�Specific IIoT Characteristics
While the IIoT is an extension of the IoT, and therefore it borrows most

of its fundamental concepts from the IoT, there are several technologies

uniquely developed in the commercial and industrial environments:

•	 Digital twins10 are digital replicas of physical systems. The

purpose of these twins is to simulate, optimize, and test in

real-time the physical systems. A prominent example is

the use of digital twins in the context of smart buildings.11

10�A. El Saddik. Digital Twins: The convergence of multimedia technologies. IEEE
MultiMedia, 25(2): 87–92, 2018

11�www.ibm.com/blogs/internet-of-things/creating-buildings-digital-twin/

Chapter 1 Internet of Things Systems Overview

http://www.ibm.com/blogs/internet-of-things/creating-buildings-digital-twin/

15

•	 Radio-frequency identification (RFID)12 uses

electromagnetic fields to automatically identify and

track electronic tags attached to physical objects or

implanted in animals (livestock and pets). The RFID

tags make it possible to identify and monitor the things

of the IoT network efficiently.

•	 Edge intelligence13 refers to the ability of a system to

collect, process data from sensors, and make decisions

in the environment locally, without sending the data

to the cloud. The point of this technology is to increase

the efficiency of the system by reducing latency,

costs, and security risks just by avoiding unnecessary

communications to the cloud.

•	 Smart (or predictive) maintenance14 refers to

technologies that allow for the monitoring of in-service

equipment with the purpose of estimating when

maintenance should be performed. The goal of this

technology is to increase productivity (also boosting

“just-in-time manufacturing”) and reduce costs

associated with equipment downtime.

12�www.atlasrfidstore.com/rfid-beginners-guide/
13�www.hpe.com/emea_europe/en/what-is/intelligent-edge.html
14�R. Keith Mobley. An Introduction to Predictive Maintenance. Butterworth-

Heinemann, 2002

Chapter 1 Internet of Things Systems Overview

http://www.atlasrfidstore.com/rfid-beginners-guide/
http://www.hpe.com/emea_europe/en/what-is/intelligent-edge.html

16

•	 Electronic Logging Device (ELD or E-Log)15 is an

electronic hardware device that is attached to another

machine in order to log its activities. The classic example

is the logging device attached to motor vehicles in order

to record driving hours. More broadly, digital logging

devices are able to provide real-time monitoring and

diagnosis information about any system.

�Edge Computing
Edge computing is a paradigm of the IoT in which primary data processing

and decisions are made at the second level of the IoT stack. While this does

not wholly exclude the cloud component from an IoT solution, the edge

computing model aims to leverage the processing and storage capabilities

of devices such as the Raspberry Pi (or other edge devices) and offload the

cloud from ineffective operations.

Most of the IoT solutions that were developed at the onset of the IoT

revolution used to rely exclusively on cloud processing and storage capabilities.

The general functioning principle would involve data to be gathered from the

sensors, sent to the cloud, which would generate all decisions and send back the

necessary actions to the actuators. In this context, the cloud was overwhelmed

by a large amount of redundant data and processing. Security and privacy

concerns have also been raised due to external data exposure.

The solution proposed by the edge computing principle is to do basic

data processing on the devices that gather the readings from the sensors and

even take local decisions based on the information they retrieve. In this case,

the edge devices would filter the readings and send to the cloud only the

relevant values. Furthermore, the cloud would be used only for processing that

requires powerful computational resources such as machine learning and AI.

15�www.eldfacts.com/eld-facts/

Chapter 1 Internet of Things Systems Overview

http://www.eldfacts.com/eld-facts/

17

To better understand the advantages of edge computing, let us take

the example of a wind turbine control solution. The system can measure

wind speed and change the turbine’s pace accordingly. Without edge

computing, this solution would measure the wind speed every second

and send the (mostly identical) readings to the cloud, resulting in large

amounts of redundant data to be transmitted and stored. Next, when

the readings would change, the cloud would send the commands to

adapt the turbine rotation speed. In the edge computing paradigm, the

readings are stored on the edge device, and only variations are sent to

the cloud, significantly reducing the amount of transmitted data. Also,

the edge device has the processing capability to take basic decisions and

command the wind turbine to change its pace. On the other side, the cloud

can be used to gather the relevant data from a multitude of turbines in

different places, and by using advanced algorithms, it can predict natural

phenomena such as storms or even tornados and optimize the long-term

functioning of the turbine.

In the current context of having sensors and connected devices

increasing at an exponential pace resulting in vast amounts of data and

much processing, edge computing is gaining more and more popularity,

and the majority of new IoT platforms rely on this model.

�The Raspberry Pi As an Edge Device
As of 2020, the Raspberry Pi is the most used edge device for building IoT

solutions among the DIY and maker communities. The affordable price

and accessibility made it extremely popular. The computing and storage

capabilities of the Raspberry Pi enables people to use it as an edge device

within the IoT projects they are building.
For the hobbyist, the Raspberry Pi comes in two main flavors: the full

model and the Raspberry Pi zero model. While the complete model has all
the basic features of a modern computer (Wi-Fi, BLE, Ethernet port, HDMI
port, USB port, stereo output jack port, etc.), the Raspberry Pi zero family was

Chapter 1 Internet of Things Systems Overview

18

designed as a smaller, cheaper alternative having fewer connectors and fewer
features. Also, both Raspberry Pi models can be directly connected to sensors
and actuators through pins. The devices can support the basic GPIO, SPI, I2C,
serial connections, and other more complex types.

Besides the devices we mentioned, the Raspberry Pi Foundation
also released a compute module, built for industrial use. The Raspberry
Pi Compute Module family consists of devices having the same core
(processor, memory, etc.) as the previous, but with a different form factor.
The core modules have reduced dimensions and are designed to be
integrated into custom systems. Therefore, they support more GPIO and
other interfaces that are intended to be connected to external modules.

Figure 1-2 depicts a Raspberry Pi Compute Module 3+. The device has
the following main specifications:

•	 Broadcom, Cortex-A53 64-bit SoC processor, running at
1.2GHz.

•	 1GB LPDDR2 SDRAM memory.

•	 Depending on the model it can have 8GB/16GB/32GB
of eMMC flash memory.

•	 Board dimensions: 67.6 × 31.1 × 3.7 mm.

Figure 1-2.  The Raspberry Pi Compute Module 3+16

16�www.raspberrypi.org/products/compute-module-3/

Chapter 1 Internet of Things Systems Overview

http://www.raspberrypi.org/products/compute-module-3/

19

Given its characteristics and the variety of projects and products built

on top of it, it would be an understatement to refer to the Raspberry Pi

only as a prototyping device. The Raspberry Pi is widely integrated into

commercial and industrial machines. However, as the device still lacks

some characteristics that are very important for the industrial system, it

requires external hardware and software to make it suitable for industrial

environments.

�The Raspberry Pi in Industry
A fundamental characteristic of any industrial system is the need to

respond in real time to specific triggers. This means that the machine has

a well-defined maximum amount of time during which it needs to react

to an environment parameter change or event. As a result, a real-time

system has strict constraints related to the timing at which instructions are

executed. If you think of an assembly line, each robot needs to be perfectly

synchronized with its peers and carry out its actions in a determined

amount of time. Similarly, the reaction time of the system has to be below

some prescribed value (usually expressed in milliseconds) in order to be

useful. To achieve these requirements, real-time systems usually run only

one piece of software to ensure certainty regarding when each line of code

gets to be executed.

As already mentioned, industrial devices need to be robust and to

work uninterrupted for long periods of time (years) in harsh conditions

(strong vibrations, high temperatures, humidity, and high levels of harmful

chemical substances). If, or when, they fail, IoT devices need to be able to

reset and recover automatically or, as in the case of catastrophic failures,

send diagnosis information to the main systems. This is why most of the

industrial systems are built around PLCs.

Chapter 1 Internet of Things Systems Overview

20

Programmable logic controllers (PLC) are ruggedized industrial

computers designed to be integrated into systems such as manufacturing

or assembly lines, robot devices, etc. They are computers specialized in

controlling specific industrial processes. The processing unit is usually

a microcontroller that runs its firmware, which is capable of real-time

operations. Also, the device exposes robust connectors, resistant to

tampering and short-circuits. PLCs are usually built as modular cases

that can be easily integrated into the existing infrastructure and present

a simple control and monitor interface, generally consisting of a display,

status LEDs, switches, and buttons. Figure 1-3 depicts an example of a PLC

device.

Today, PLCs which are compatible with the Raspberry exist, enabling

the integration of the Raspberry Pi into industrial products. This way,

companies willing to build systems that have a Raspberry Pi as a core

component do not need to spend resources on building their custom

hardware or ruggedizing the hardware device.

These devices come in robust casings that completely enclose the

Raspberry Pi. They connect to the device’s pins and expose industrial-

grade connectors and peripherals, for example, LEDs or switches.

Another aspect that does not make the Raspberry Pi suitable for direct

use inside industrial machines is the power supply. The Raspberry Pi

needs to be connected to 5V DC, while the industrial systems usually work

with higher voltages. This is why the hardware expansions also expose

power sockets supporting voltages up to 30–40V DC as the Raspberry Pi

receives current from the expansion.

Chapter 1 Internet of Things Systems Overview

21

Examples of devices that are industrial expansions for the original

Raspberry Pi are the Monarco Hat,18 the Iono Pi,19 the Revolution Pi,20 or

the UniPi.21

Figure 1-3.  The APB Programmable Logic Controller17

17�www.circuitspecialists.com/apb-12mrdl.html
18�www.monarco.io
19�www.sferalabs.cc/iono-pi
20�https://revolution.kunbus.com
21�https://www.unipi.technology

Chapter 1 Internet of Things Systems Overview

http://www.circuitspecialists.com/apb-12mrdl.html
http://www.monarco.io
http://www.sferalabs.cc/iono-pi
https://revolution.kunbus.com
https://www.unipi.technology

22

�IoT Communication Protocols
An electronic device that works in isolation collecting data and acting

upon the environment is not considered a modern IoT device. The ability

to communicate with other IoT devices and the cloud is essential to

creating the type of interconnected world promised by the IoT.

In the context of heterogeneous devices having to interact with each

other, the IoT relies on protocols that enable peripherals and devices to

communicate. This is why a strong emphasis is placed on how data is

transmitted between the components of an IoT system.

Next, we explore some of the most popular communications protocols

currently used in IoT systems.

�Low-Level Data Transmission Protocols
Be it intra-board (peripherals-to-device) or inter-board (device-to-device)

communication, IoT systems require reliable and efficient ways of data

transmission. One of the first aspects of data exchange between devices is

the transmission medium, where we have two options: wired or wireless

connections.

The main advantage of wired connections is that data transmission is

done fast, reliably, and securely. On the other hand, if the system covers a

large area to be monitored, wires have to stretch for long distances, making

them prone to damage and failure. This is where wireless solutions might

become necessary.

Many modern IoT devices are capable of wireless communications.

Unfortunately, the transmission is not as fast and reliable as the wired

lines. On the other hand, wireless solutions are useful for systems covering

a large area: smart building solutions, in agriculture where crops and farms

need to be monitored, or remote oil and gas extraction plants.

Some of the most popular intra-board wired protocols for commercial

devices are:

Chapter 1 Internet of Things Systems Overview

23

•	 Universal Asynchronous Receiver/Transmitter

(UART) – This protocol enables two devices to

communicate using two lines for data transfer: transmit

(TX) and receive (RX). Each device sends its streams of

data on one line and reads incoming bits on the other

line. Data is sent in packets delimited by start and end

bits. There is no synchronization mechanism between

the two devices. When one device detects the start

sequence, it begins reading the data up until it detects

the end sequence.

•	 Inter-Integrated Circuit (I2C or I2C) – This transmission

mechanism also uses two lines of communication: SDA

(serial data) and SCL (serial clock). The SDA line is for

the actual data transmission, while the other is only

for the clock signal. The protocol has a bus topology

and uses the master-slave architecture where only the

master devices can initiate communication with the

slaves. When connecting sensors to the Raspberry Pi,

the device acts as the master, and the peripherals are

the slaves. Also, unlike the UART, this protocol supports

multiple masters connected to multiple slaves. When

the master initiates data transmission, it also specifies

the slave that it wants to communicate with. This

information is sent to all peripherals so that only

addressed slaves can prepare to send and receive data.

•	 Serial Peripheral Interface (SPI) – This transmission

mechanism uses at least three lines of communication:

Master Output/Slave Input (MOSI), Master Input/Slave

Output (MISO), Clock (SCLK). It has a bus topology

and also uses the master–slave architecture, allowing

for multiple slaves connected to only one master.

Chapter 1 Internet of Things Systems Overview

24

In this case, SPI uses one extra line for each slave, the

Slave Select/Chip Select (SS/CS). When the master

wants to communicate with one of the slaves, this

receives a LOW signal on the SS/CS line and becomes

active. All the other slaves receive HIGH on the

SS/CS line and become inactive (the behavior will be

as if they were not connected to the communication

lines). The actual data is transmitted on two lines.

One line is for data sent by the master, while another

line is for data sent from the slaves. The SCLK line

is used for synchronization, and the SS lines that

connect to only one slave enable the master to initiate

the communication with a specific slave. The main

advantage of SPI is that data is sent continuously, not in

packets, and supports higher transmission rates. Also,

the slave and master can simultaneously send data.

In industrial systems, communication is usually done via Ethernet

connections, making the architecture scalable and modular. For the

industry, the protocols designed on top of Ethernet, need to ensure

reliability and fast transmission rates. Two of the most used industrial

inter-board protocols are:

•	 Ethernet/IP – It is currently one of the most used

industrial communication protocols. Depending on the

purpose of communication, data can be transmitted

either by UDP (real-time critical data coming from

sensors or controlling actuators, where some data losses

are acceptable) or by TCP (application parameters or

other non-real-time information, where some data

losses are unacceptable). Communication can be done

through various mechanisms such as pooling, triggers,

or direct unicast or multicast connections.

Chapter 1 Internet of Things Systems Overview

25

•	 Profinet – Profinet is an industrial protocol which aims

to enable fast communication between industrial

peripherals and control systems. It is built using an

advanced synchronization mechanism that makes it

efficient and allows real-time data transmission. Data

packets are assigned priorities allocation of different

bandwidth sizes.

As we previously mentioned, some IoT systems are easier to

implement using wireless sensors. Therefore, a wide variety of wireless

protocols, specially designed for edge devices have been developed. These

protocols are built to ensure reliable and fast data transmission, using

limited resources. Some of the wireless protocols used for commercial and

industrial IoT systems are:

•	 Bluetooth Low Energy (BLE) – BLE is a protocol

that uses radio frequencies for data transmission. It

was first developed for smartphones, but due to its

characteristics, it is currently supported by various

sensors and integrated into edge devices. Despite

its name, BLE is different from classical Bluetooth.

BLE is designed to use low energy levels. As a result,

the protocol supports small packets of data being

transmitted at specific time intervals. Also, the

information sent over BLE cannot cover large distances.

All these characteristics are in contrast to Bluetooth,

which does not balance energy consumption.

•	 LoRa – It is a protocol designed to be used for long-

range communication. LoRa specifications state that

data can be transmitted on distances of around 10km.

In addition, LoRa is designed to consume very little

energy, allowing battery-powered devices to run for

Chapter 1 Internet of Things Systems Overview

26

years without the need to change the battery. Due to

these characteristics, LoRa is heavily implemented into

agricultural solutions that need to cover large areas.

•	 Zigbee – Zigbee is designed to be used for data

transmission over small distances with very low energy

consumption. With a transmission rate of around

250kb/s, the protocol is not tailored for systems

requiring fast communication between devices. Zigbee

was built especially for home automation systems,

where the area to be covered is limited, and the

communication speed is not crucial.

�Application-Level Protocols
All the previously described protocols handle how information is

transferred between devices and focus on ensuring data integrity and

transport efficiency. The transfer specifications are implemented by the

hardware devices used for the transmission. Most of the software logic is

performed either in the lower-level libraries for microcontrollers or the

operating system for higher-level systems.

As lower-level protocols make sure data is transmitted from one

device to another, applications running on those devices must make sense

of the data they are sending or receiving. As several applications need

to exchange data, application-level protocols have also been defined.

Consider them just a set of standards and rules that applications enforce to

understand the data they exchange. These protocols are based on and run

on top of the lower-level communication protocols previously described.

At the application level, we can choose from several protocols designed

to support fast and efficient communication, usually based on small-sized

data packets (as sensor readings are usually short).

Chapter 1 Internet of Things Systems Overview

27

The protocols most used for inter-device communication for

nonindustrial pieces of equipment are

•	 MQ Telemetry Transport (MQTT) – MQTT is a

lightweight protocol implemented over TCP/IP

based on the publish–subscribe paradigm. The

publisher broadcasts messages based on different

topics, and subscribers receive all messages related

to the topic they subscribed to. It was designed to

enable communication between constrained devices

over limited bandwidth networks. MQTT packets

are reduced in size: maximum message payload is

256MB. MQTT ensures three different levels of QoS for

data transmission. While level 1 works on the fire and

forget principle, levels 2 and 3 ensure that each packet

reaches its destination.

•	 Constraint Application Protocol (CoAP) – CoAP is a

protocol designed for devices with limited capabilities

and unreliable, constrained networks as well. CoAP is

built in a similar way to HTTP, making use of the same

request methods: GET, POST, PUT, etc. On the other

hand, the CoAP packets are much smaller as the header

format is different from HTTP.

For industrial machines, the most common communication is done

using the following technologies:

•	 Modbus – It is an application-level protocol and can be

implemented on top of several transport layers such

as serial, Ethernet, or Wi-Fi. It was developed in 1979

and is currently one of the most used communication

technologies. Due to its versatility, it is now one of

the most implemented communication protocols in

Chapter 1 Internet of Things Systems Overview

28

the industry and is used for both device-to-device

and peripherals-to-device communications. Modbus

is based on the client-server paradigm. While over

serial connections, one specific device is assigned

the master role, over Ethernet any device can initiate

the communication. There are several versions of the

Modbus protocol, each with different packet formats.

•	 OPC Unified Architecture (OPC-UA) – It is built on top

of the TCP/IP stack and is based on a service-oriented

architecture. In this case, the device implementing the

OPC-UA protocol exposes functions and data that other

devices can call remotely.

�Interfacing with the IoT System
When building an IoT product, personal, commercial, or industrial, an

interactive user interface is usually required. Depending on the product’s

purpose and how it is meant to be used, the interfacing mechanism can

vary significantly. While for a smart coffee machine, the system needs to

be equipped with a friendly display that the user can interact with, for an

industrial monitoring solution the interfacing mechanism needs to be

simple, clear, and easy to use. Also, if the solution you built is designed

to be integrated within a larger platform, it also needs to support an

interfacing mechanism with external systems (e.g., machine-to-machine

communications).

�User Interface
When it comes to offering an interface from which the user can control

the solution you provide, the focus falls on the user experience and

depending on what kind of product you develop, and there are several

interfacing options.

Chapter 1 Internet of Things Systems Overview

29

For commercial products that are designed for regular users, such as

smart vacuum cleaners or smart lighting systems, it is important to offer an

intuitive control interface. This is why the majority of such devices come

with a touch screen attached.

�Touchscreen

The touchscreen is usually connected directly to the edge device and

displays an interface through which the user can control and monitor it.

The touchscreen behaves similarly to any regular screen that you would

connect to a computer to display information. It can also act as a regular

mouse, transmitting the user’s events such as click, long-click, drag, etc.

Some of the touch displays have more complicated behavior and require

drivers to be installed so the device can recognize them. In this case, the

touch events are transmitted differently to the device.

In either of the cases, the devices need to be capable of running a

graphical user interface (GUI). For this, you have to ensure that a display

server runs on the device. The display server is an application responsible

for collecting the events from input devices such as a keyboard or mouse,

sending it to the operating system for processing, and finally displaying

the appropriate output on the display screen. Some of the most used such

servers are X11, Wayland, or Mir.

�Web Application

Another more versatile user interface option is to offer a web platform that

users can access from their computers, tablets, or phones.

In this case, the edge device sends and retrieves the relevant

information to and from a web server. The service can be accessed by users

from a browser where data coming from the IoT device is displayed, and

actions are executed by users. These actions are then transmitted by the

server to the edge device, controlling the product.

Chapter 1 Internet of Things Systems Overview

30

The main advantage, in this case, is that the users can control and

monitor the IoT devices remotely. On the other hand, this makes the

system functionality dependent on the Internet or a local network

connection. If the connection is lost, information between the edge device

and the web server cannot be exchanged. Unfortunately, this architecture

also generates several security risks. All sensitive data transmitted to and

from the edge device can be intercepted or altered in a malicious manner.

Therefore, somebody could manipulate the device in a dangerous way or

could take hold of sensitive information.

To prevent all these risks, some IoT products use the edge device

to host the web server, allowing the users to access it only if they are

connected to the same network. While this approach reduces the device’s

accessibility, it also makes it independent from an Internet connection and

significantly reduces some of the security risks.

�Physical Controls
For industrial platforms, the control system needs to be accessible and

reliable in exchange for a less attractive interface.

While many industrial systems offer web interfaces for monitoring and

control, they also provide physical control over the devices. In this case,

products expose buttons and switches that enable direct control over critical

components such as motors and valves. Since these mechanisms are directly

connected to the machines, they ensure fast control. In addition, simple

displays or even LEDs are used to signal the current status of the equipment.

�Platform Interface
Many IoT solutions are designed to be modular and easy to integrate into

larger infrastructures. Therefore, the functionalities supported by the

product can be extended and abstracted within a larger solution. As such,

the platform to be extended needs to provide a way to interact with it.

There are two main approaches: libraries and REST APIs.

Chapter 1 Internet of Things Systems Overview

31

�Libraries

The simplest, classic way to implement and expose basic general

functionalities is to group them and wrap them as libraries. While this

approach works very well for local operating systems and any complex

software packages, for distributed environments such as the IoT, it is

difficult to distribute the library among devices. This brings a lot of

installation and maintenance overhead, and as such, there are very few

modern solutions relying on this approach.

A possible way to extend libraries over networks is to use Remote

Procedure Calls (RPC). In this way, edge devices can reliably call functions

that reside on different machines over the IoT network.

�REST API

Most of the software platforms built nowadays are delivered under the

form of Software as a Service (SaS). In this case, the platforms offer a web

interface through which users can access the solutions, but most of them

also expose a representational state transfer (REST) API, which allows

them to be integrated into other platforms.

In this case, the solution runs in the cloud, and the service provider is

the one responsible for all the maintenance and updates. The integrator, or

user, authenticates on the platform, and with the help of GET, POST, PUT,

etc. calls can access the resources of the core platform. We refer to the calls

exposed by the platform as its Application Program Interface (API), and if

the calls are RESTful operations, we call it the REST API. Most of the time,

the REST API is built using web resources. Resources are identified using

their Uniform Resource Identifiers (URI), while requests and replies use

HTTP (usually formatted using HTML, XML, or JSON) and can contain

new hypertext links that point to new resources in the RESTful system.

The main advantage of RESTful systems is that users accessing the

resources have no direct access to the underlying software platform, and

Chapter 1 Internet of Things Systems Overview

32

therefore they do not have to bother with installing external libraries or

managing the software systems. They can focus on building their own

solution around the available platforms. On the other hand, if the provider

changes one of the resources, the users also have to update their solutions.

This is why the users need to dedicate time and effort to keep their

solutions up to date with the latest changes.

�Software for IoT Systems
So far, we have seen that IoT systems rely on various devices that exchange

information between themselves and with the users. An important factor

that enables the devices’ smart behavior is the software that runs on them.

�Software Characteristics
Many of the characteristics of commercial and industrial IoT products are

reflected in the applications that the devices run. The applications need to

be carefully designed to meet the general requirements of any IoT system,

with an emphasis on reliability and security.

Based on the main attributes of IoT solutions, we can identify the

following aspects that need to be taken into account when building

applications that run on the Raspberry Pi or other edge devices:

•	 Resource consumption – If we did not emphasize this

enough, we mention once again that devices integrated

into IoT solutions have reduced capabilities and usually

rely on a constrained energy source, such as a battery.

Because of this, it is very important to ensure that the

software that runs on the devices does not waste their

resources. In this regard, we should make sure that we

do the minimum required number of computations

Chapter 1 Internet of Things Systems Overview

33

to achieve the expected results and that any operation

that the CPU has to execute has a well-defined purpose

and is done as efficiently as possible.

•	 Real time – For industrial solutions, real-time response

is crucial. This means that for certain cases, the

software we build has to process input data as fast as

possible and employ an efficient response to the trigger.

•	 Stability – To ensure the systems we deploy are robust

and stable, we need to make sure that the software

running on them handles all exceptions and corner

cases and does not crash at any time. For this reason,

the testing phase is crucial. During this step, all events

need to be thoroughly replicated and observed how

the software behaves in every possible condition.

Software and hardware watchdog timers are used

to automatically reset or shut down temporarily the

devices that are unresponsive in remote places. By

shutting down systems, we can also mitigate against

some DDoS attacks.

•	 Modularity – Since heterogeneity is an important

characteristic of IoT systems, the applications need

to be developed based on components that are easy

to extend and modify. We need to be able to easily

integrate a new hardware or software component

to the original system while preserving its main

characteristics.

•	 Scalability – We need to keep in mind that IoT systems

need to run on and handle thousands of simultaneous

sensors and devices that exchange data between each

other.

Chapter 1 Internet of Things Systems Overview

34

•	 Security – Both commercial and industrial IoT

solutions handle sensitive data and control

mechanisms. This is why security is imperative when

building any IoT application.

�Software Development
Developing applications for IoT systems is different from building other

software products such as desktop, mobile or web applications. This is

mainly due to the components and specific purposes of IoT systems.

First of all, the software in controlling an IoT system depends greatly

on the hardware characteristics of the system. While for a smart coffee

machine we are less interested in the power consumption, for a remote

farm monitoring solution, we aim to reduce the processing to increase

the battery lifetime. In a similar manner, when we talk about building

industrial systems, the most important aspect is how responsive the

platform is, while for consumer applications, we might dedicate more

resources to develop a friendly user experience to the detriment of fast

response times. This can impact the way we develop our applications, as

each instruction we call has an impact on the battery life or the response

time. Most of the time, most IoT systems have to balance among various

key performance indicators.

Secondly, in many of these systems, the user interface might be

nonexisting. Most of the time, applications are developed for a device

(Raspberry Pi or similar) that has no keyboard, mouse, or screen. In

this case, device access and control are an important aspect that the

developers have to tackle.

Considering these challenges and characteristics, private companies

and the open source community have built development tools specially

designed for IoT development and prototyping. These tools consist of both

advanced programming environments, but also programming languages

specific to IoT applications.

Chapter 1 Internet of Things Systems Overview

35

�Programming Languages

When talking about software development for embedded devices

programming, most of the people think about C as the main programming

language. However, there are a plethora of other popular choices,

depending on what kind of IoT application you aim to build.

First of all, any complete, commercial/industrial IoT system will

consist of various sensors and actuators that communicate with a central

unit. Many of these peripherals are complex devices that implement

communication protocols. These peripherals usually contain a

microcontroller that needs to be programmed. For these, at the moment,

C is the most suitable programming language. While there are also

lightweight interpreters that enable JavaScript or Python to be used for

microcontroller programming (JerryScript22 and MicroPython23), most

devices of this kind support only C programming.

Secondly, the local processing and storage devices (Raspberry Pi

or similar) used in IoT systems are programmed to communicate with

the peripherals on the one hand, and with the cloud, on the other hand.

Therefore, programming these devices requires handling network

connections, file manipulation, and other similar operations. Usually,

using C for these applications brings a large overhead in the development

time and makes them more prone to development bugs. In this case,

languages such as Python or JavaScript are widely used. There are also

other alternatives, among which Java and C++ are particularly popular.24

Furthermore, for an edge device that is also connected to a display,

we need to use a programming language that supports building user

interfaces. In this case, the most popular choices are either building Java or

22�https://jerryscript.net/
23�https://micropython.org/
24�https://dzone.com/articles/how-to-choose-the-best-programming-
language-for-io

Chapter 1 Internet of Things Systems Overview

https://jerryscript.net/
https://micropython.org/
https://dzone.com/articles/how-to-choose-the-best-programming-language-for-io
https://dzone.com/articles/how-to-choose-the-best-programming-language-for-io

36

Python applications that integrate User Interface (UI) libraries or building

a web application that runs on the device. In this case, technologies such

as HTML, CSS, and JavaScript are used.

Besides the classical programming languages, IoT systems can also

be designed and modeled using visual programming environments. This

approach is especially suitable for industrial systems, where we design

applications as complex pipelines that transfer and process data.

The most popular visual programming interface for IIoT systems is

Laboratory Virtual Instrument Engineering Workbench (LabVIEW).25

This is an industrial development environment designed by National

Instruments. Another visual programming environment, which is widely

used for both industry and prototyping, is Node-RED,26 developed by

IBM. Both platforms enable the creation of flow diagrams, where each

element is a function that receives data from the previous connection,

processes it, and sends the result further on.

For industrial applications that also require a user interface, systems

such as Crank27 or Qt28 enable fast development of UI screens by dragging

and dropping elements such as buttons, labels, boxes, etc.

�Development Environments

IoT application development can be divided into two main phases:

prototyping and scale production, each having specific challenges. Thus,

we can use various development environments, each optimized for one of

these phases.

IoT prototyping should be a fast process. In this case, the main

challenge is the difficult hardware setup process. For example, in case

25�www.ni.com/ro-ro/shop/labview.html
26�https://nodered.org/
27�www.cranksoftware.com/
28�www.qt.io/

Chapter 1 Internet of Things Systems Overview

http://www.ni.com/ro-ro/shop/labview.html
https://nodered.org/
http://www.cranksoftware.com/
http://www.qt.io/

37

the application we aim to build should run on a Raspberry Pi, we need to

configure the device and find a way to upload the application on it. We

can use a screen and a keyboard to program devices that run a complete

operating system with UI integrated. However, in most cases, we have the

device encased, connected to various sensors and actuators. In this case,

we need a way to program it remotely.

To this end, many Integrated Development Environments (IDEs)

support various plug-ins that allow you to establish a connection to

the device and program it remotely. However, there are also some IDEs

especially designed to enable the programming of an embedded device

without the need to connect to it directly. Two examples are JetBrains29

and Wyliodrin STUDIO.30

As Wyliodrin STUDIO is open source, does not require any account

signup, and has no costs attached, this is the IDE that we will use to build

the applications in the following chapters.

Shifting from IoT prototyping to large-scale production poses a lot of

diverse challenges. First, once the application for an IoT platform has been

developed, it needs to be deployed on all hardware (currently produced

and already in production). In general, this is a complex process that

requires all devices to be flashed with the same software.

Another important aspect is pushing application updates. Similar to

other software applications, IoT systems require periodic updates for both

new features and security reasons. As the system rarely comes with a user

interface, updates need to be done remotely and to ensure there are no

failures along the process. However, software failures are imminent when

talking about any devices. While we aim to reduce the number of failures,

we can never prevent them completely. Diagnosing a production device

that has no user interface is another challenge. This requires a specialized

way to monitor and control it remotely.

29�www.jetbrains.com/
30�https://wyliodrin.studio/

Chapter 1 Internet of Things Systems Overview

http://www.jetbrains.com/
https://wyliodrin.studio/

38

Considering all these challenges, companies have developed

solutions meant to handle IoT software development, management

and deployment. These solutions enable producers to remotely deploy

software on the devices while allowing them to monitor and control the

deployed products in real-time.

Examples of such IoT industrial development and management

solutions are IoTWay,31 Balena,32 or Mender.33 These applications use

container technologies to package the applications and publish them to a

large number of IoT devices. They also enable developers to monitor and

diagnose devices and publish application updates, if necessary.

�Wyliodrin STUDIO

In this book, we will guide you through prototyping applications that can

be easily turned into commercial or industrial IoT systems. As a result, we

need a programming environment designed for IoT prototyping. This is

why we choose to use Wyliodrin STUDIO.

Wyliodrin STUDIO is an open source, web-based IDE for IoT

development. The platform comes in two flavors: a local version that can

be installed on any platform or a browser version. The IDE is compatible

with various embedded devices (Raspberry Pi, NXP Rapid IoT Prototyping

Kit, UDOO, and BeagleBone Black), and it enables developers to control

and deploy applications on the devices remotely. The applications can be

written in Python or JavaScript, while bash scripts can also be created and

executed. In addition, a visual programming language, based on Google

Blockly, is also supported.

31�https://iotway.io/
32�www.balena.io/
33�https://mender.io/

Chapter 1 Internet of Things Systems Overview

https://iotway.io/
http://www.balena.io/
https://mender.io/

39

In Chapter 2, we will provide a full overview of Wyliodrin STUDIO and

how to use it to program the Raspberry Pi.

�Summary
In this chapter, we provided an outline of general Internet of Things

systems, which we illustrated as the IoT stack. We then outlined the

differences between prototyping, commercial, and industrial solutions

with an emphasis on the special characteristics of the solutions

implemented at the industrial scale. While for prototyping purposes,

scalability and reliability are not crucial factors to be taken into account,

for commercial and especially industrial solutions scaling the solution is a

problem in itself.

As the following chapters of this book will focus on how to build

commercial and industrial systems using the Raspberry Pi, we reviewed

some hardware and software solutions that enable us to integrate the

Pi into industrial systems. Another aspect that we presented in this

introductory chapter consists of the main communication protocols used

for data transmission between sensors and devices, and between devices.

In the next chapters, we will use many of these in our applications. We

then discussed ways in which we can enable users to interact with our IoT

applications or, better yet, how to build applications that can be integrated

into larger systems.

Finally, we also mentioned some of the challenges faced when

building applications for the IoT devices and presented Wyliodrin

STUDIO, the platform that we will use in the following chapters to help us

overcome these concerns.

In the following chapters, we will deal with all these aspects in a more

detailed and concrete approach by integrating the presented technologies

into real-life applications.

Chapter 1 Internet of Things Systems Overview

40

�Further Reading
The purpose of this chapter was to provide an overview of IoT systems,

without going into the details of any particular technology. As such, the

purpose of this section is to provide further reading directions for most

of the technologies discussed in this chapter and which will also be used

subsequently in the book.

Several books outlining the basics of the IoT have been very

well received by the readers. For a technical description that covers

terminology, principles, and solutions for the IoT, we highlight books

by Timothy Chou,34 Maciej Kranz,35 and Perry Lea.36 For a commercial/

business approach to IoT solutions, we recommend Bruce Sinclair’s

book.37 For those interested in the history of SCADA systems, we

recommend the description given by Jerry Russell.38 We also highlight

several video resources that provide general overviews of IoT technologies

such as Harvard’s CS50 class given by James Whittaker,39 Benson

Hougland’s TEDx talk40 on the IoT, and Alexandru Radovici’s introductory

IoT lecture.41

34�www.amazon.com/Precision-Principles-Practices-Solutions-Internet/
dp/1329843568/

35�www.amazon.com/Building-Internet-Things-Implement-Competitors-ebook/
dp/B01MXJ3Q09

36�www.amazon.com/Internet-Things-Architects-communication-infrastructure/
dp/1788470591

37�www.amazon.com/IoT-Inc-Company-Internet-Outcome-ebook/dp/B071DZZRQS
38�web.archive.org/web/20150811051350/http://scadahistory.com/
39�www.youtube.com/watch?v=ci4kbCmEmOI
40�www.youtube.com/watch?v=_AlcRoqS65E
41�www.youtube.com/watch?v=G4-CtKkrOmc

Chapter 1 Internet of Things Systems Overview

http://www.amazon.com/Precision-Principles-Practices-Solutions-Internet/dp/1329843568/
http://www.amazon.com/Precision-Principles-Practices-Solutions-Internet/dp/1329843568/
http://www.amazon.com/Building-Internet-Things-Implement-Competitors-ebook/dp/B01MXJ3Q09
http://www.amazon.com/Building-Internet-Things-Implement-Competitors-ebook/dp/B01MXJ3Q09
http://www.amazon.com/Internet-Things-Architects-communication-infrastructure/dp/1788470591
http://www.amazon.com/Internet-Things-Architects-communication-infrastructure/dp/1788470591
http://www.amazon.com/IoT-Inc-Company-Internet-Outcome-ebook/dp/B071DZZRQS
http://web.archive.org/web/20150811051350/
http://scadahistory.com/
http://www.youtube.com/watch?v=ci4kbCmEmOI
http://www.youtube.com/watch?v=_AlcRoqS65E
http://www.youtube.com/watch?v=G4-CtKkrOmc

41

Furthermore, there are many excellent resources in the literature that

focus and detail a particular aspect of the IoT. We provide several reading

materials, and we discuss hardware, software, and communications

protocols for the IoT separately. We conclude the reading list with a few

specialized IoT topics.

The hardware tool we will use throughout this book is the Raspberry

Pi. Aside from the resources and tutorials42 on the official web site of the

Raspberry Pi Foundation, we can recommend the following books by

Sean McManus43 and Simon Monk.44 Several very good video resources

also include the introduction to the Raspberry Pi by sentdex45 or the very

detailed coverage by Paul McWhorter.46

In this book, to develop the software components we will mainly

use the JavaScript programming language (Node.js). More broadly, to

review the web programming concepts, we recommend the book by Julie

C. Meloni and Jennifer Kyrnin,47 Edureka!’s video tutorial introduction,48

and the detailed video tutorial by Full Stack Web Development.49

42�www.wiley.com/en-it/Raspberry+Pi+User+Guide-p-9781118464496
43�www.amazon.com/Raspberry-Pi-Dummies-Computers/dp/1119412005
44�www.amazon.com/Raspberry-Pi-Cookbook-Software-Solutions/
dp/1491939109

45�www.youtube.com/playlist?list=PLQVvvaa0QuDesV8WWHLLXW_avmTzHmJLv
46�www.youtube.com/playlist?list=PLGs0VKk2DiYypuwUUM2wxzcI9BJHK4Bfh
47�www.amazon.com/HTML-JavaScript-Sams-Teach-Yourself/dp/0672338084/
48�www.youtube.com/watch?v=Q33KBiDriJY
49�www.youtube.com/playlist?list=PLwoh6bBAszPrES-EOajos_E9gvRbL27wz

Chapter 1 Internet of Things Systems Overview

http://www.wiley.com/en-it/Raspberry+Pi+User+Guide-p-9781118464496
http://www.amazon.com/Raspberry-Pi-Dummies-Computers/dp/1119412005
http://www.amazon.com/Raspberry-Pi-Cookbook-Software-Solutions/dp/1491939109
http://www.amazon.com/Raspberry-Pi-Cookbook-Software-Solutions/dp/1491939109
http://www.youtube.com/playlist?list=PLQVvvaa0QuDesV8WWHLLXW_avmTzHmJLv
http://www.youtube.com/playlist?list=PLGs0VKk2DiYypuwUUM2wxzcI9BJHK4Bfh
http://www.amazon.com/HTML-JavaScript-Sams-Teach-Yourself/dp/0672338084/
http://www.youtube.com/watch?v=Q33KBiDriJY
http://www.youtube.com/playlist?list=PLwoh6bBAszPrES-EOajos_E9gvRbL27wz

42

50�www.amazon.com/Node-js-Design-Patterns-server-side-applications/
dp/1785885588

51�www.youtube.com/watch?v=RLtyhwFtXQA
52�https://books.goalkicker.com/NodeJSBook/
53�www.amazon.com/Computer-Networks-Andrew-S-Tanenbaum-ebook/dp/
B006Y1BKGC

54�www.youtube.com/watch?v=QKfk7YFILws
55�www.amazon.co.uk/IoT-Fundamentals-Networking-Technologies-Protocols/
dp/1587144565

56�www.youtube.com/watch?v=s6ZtfLmvQMU
57�www.amazon.com/dp/B078MTMN77
58�www.amazon.com/Big-Data-Internet-Things-Architecture/dp/1484209877
59�www.amazon.com/5G-Enabled-Internet-Things-Yulei-Wu/dp/0367190109
60�www.amazon.com/Blockchain-Technology-Internet-Things-Liehuang/
dp/3030217655

For Node.js specifically, we suggest Mario Casciaro and Luciano

Mammino’s book,50 and the video tutorial by the Free Code Camp.51

For useful Node.js code snippets, we recommend the Node.js Notes for

Professionals.52

Throughout this chapter, we assume a general knowledge of

networking concepts and communication protocols. To overview

computer networks, an excellent reference is the book by Andrew

S. Tanenbaum53 and Geek’s Lesson’s video lecture.54 For industrial

technologies, in particular, we recommend David Hanes’ comprehensive

book55 and the introduction to IoT communication protocols by Antonio

Almeida and Jaime González-Arintero Berciano.56

Specialized IoT topics include Sravani Bhattacharjee’s securing IoT

devices and networks,57 the book on artificial intelligence and big data

for IoT58 by Robert Stackowiak and coauthors, the book on 5G and IoT

technologies59 by Yulei Wu and coauthors, and the book on blockchain

technologies applied to IoT systems60 by Liehuang Zhu and coauthors.

Chapter 1 Internet of Things Systems Overview

http://www.amazon.com/Node-js-Design-Patterns-server-side-applications/dp/1785885588
http://www.amazon.com/Node-js-Design-Patterns-server-side-applications/dp/1785885588
http://www.youtube.com/watch?v=RLtyhwFtXQA
https://books.goalkicker.com/NodeJSBook/
http://www.amazon.com/Computer-Networks-Andrew-S-Tanenbaum-ebook/dp/B006Y1BKGC
http://www.amazon.com/Computer-Networks-Andrew-S-Tanenbaum-ebook/dp/B006Y1BKGC
http://www.youtube.com/watch?v=QKfk7YFILws
http://www.amazon.co.uk/IoT-Fundamentals-Networking-Technologies-Protocols/dp/1587144565
http://www.amazon.co.uk/IoT-Fundamentals-Networking-Technologies-Protocols/dp/1587144565
http://www.youtube.com/watch?v=s6ZtfLmvQMU
http://www.amazon.com/dp/B078MTMN77
http://www.amazon.com/Big-Data-Internet-Things-Architecture/dp/1484209877
http://www.amazon.com/5G-Enabled-Internet-Things-Yulei-Wu/dp/0367190109
http://www.amazon.com/Blockchain-Technology-Internet-Things-Liehuang/dp/3030217655
http://www.amazon.com/Blockchain-Technology-Internet-Things-Liehuang/dp/3030217655

43

Finally, we also have to mention the large-scale IoT management

systems developed by the largest information technology companies: AWS

IoT61 by Amazon, Google Cloud IoT62, and Azure IoT Hub63 by Microsoft.

Other industrial companies have also developed their own platforms:

Siemens’ Mindsphere, Cisco’s Kinetic and Jasper, IBM’s Watson, GE’s

Predix, and Schneider Electric’s EcoStruxure. While each one of these

platforms has its own weaknesses, the sheer number of existing solutions

highlights the growing interest in the development of IoT applications.

61�docs.aws.amazon.com/whitepapers/latest/aws-overview/internet-of-
things-services.html

62�https://cloud.google.com/solutions/iot/
63�https://azure.microsoft.com/en-us/services/iot-hub/

Chapter 1 Internet of Things Systems Overview

http://docs.aws.amazon.com/whitepapers/latest/aws-overview/internet-of-things-services.html
http://docs.aws.amazon.com/whitepapers/latest/aws-overview/internet-of-things-services.html
https://cloud.google.com/solutions/iot/
https://azure.microsoft.com/en-us/services/iot-hub/

45© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3_2

CHAPTER 2

Getting Started with
the Raspberry Pi and
Wyliodrin STUDIO
For the work outlined in this book, all IoT applications that we develop are

composed of four major design components (IoT application stack):

	 1.	 The hardware component consists of a central

computing platform which connects various

physical elements: custom-made circuitry and

devices, sensors, actuators, power supplies,

connectivity (either Wi-Fi or network) are just a few

we mention.

	 2.	 The software component implements all logic

and action that needs to take place locally on

the hardware platform and typically consists of

several elements, including an operating system,

initialization and diagnosis modules for the

hardware components, local rules and software

logic to be executed between the sensors and

actuators, local data storage modules, and primitive

data management (processing) modules.

46

	 3.	 The network (connectivity) component refers to

the fact that an IoT application has to communicate

with the world in several ways: it has to be able

to receive information and commands from an

authenticated user, has to collect data and send

it to more advanced storage and processing units

(mostly in the cloud), and has to communicate with

social media accounts or send updates and alerts

about changes in its environment.

	 4.	 The management of the IoT application refers to

the deployment and monitoring of the behavior

of such a system once the application is up and

running. Deployment refers to the ability of

developers to set up and update the software

underlying the IoT application over the Internet.

Remember, we expect IoT devices to number in the

billions, and therefore special care has to be given to

the efficient management of these devices.

For all these components, the development process depends a lot

on the design and programming environments used. Proper setup and

tools can significantly reduce the development time and help rapidly

complete a fully functioning prototype with ease. In many cases, most

of the time spent building IoT applications is dedicated to setting up the

hardware, deploying the software onto it, and then extensively test the

stability and reliability of the solution. However, in the prototyping phase

(concerned with the development of the first three aforementioned

components), the goal is to get an application up and running as fast as

possible and then focus separately on the long-term management of the

application.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

47

This book guides you through prototyping commercial and industrial

IoT applications by following the development of the four components

enumerated in the list. Therefore, at this stage, we focus on building

the application and performing the hardware setup, which can then

be perfected to an actual product. In this context, the hardware and

software tools we choose to use are specially designed to be fast as they

are dedicated to prototyping. In the following chapters, we will use a

Raspberry Pi as the primary hardware device, which we will program and

control from the Wyliodrin STUDIO programming environment.

In this chapter, we help you get started with using the Raspberry Pi and

Wyliodrin STUDIO. Finally, we launch a simple Hello World application on

the device.

�About the Raspberry Pi
The Raspberry Pi is a pocket-sized computer with powerful capabilities.

It was first released by the Raspberry Pi Foundation in 2012 to be an

affordable and easy-to-use educational device for teaching programming.

Since 2012, several versions of the Raspberry Pi have been released, with

improved capabilities. There are three form factors: Zero, A, and B.

The Raspberry Pi Zero is the smallest and less powerful one and

is provided in two versions, Zero and Zero W (there is also a Zero WH

version, which is the Raspberry Pi Zero W with soldered header). It has

an ARMv6 CPU, 512 MB of memory, and one micro USB port. The Zero

W version adds Wi-Fi. Both versions have a special Raspberry Pi camera

socket.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

48

As of 2019, the latest Raspberry Pi Model B, V4, has an ARMv81 1.5 GHz

processor, onboard wireless and BLE, 2 USB ports, 2 USB 3 ports, an

Ethernet port, and two micro HDMI connectors (Figure 2-1). In addition,

it also has a special connector for a camera module and one for

touchscreen connection. It is powered using a USB-C cable.

The Raspberry Pi Model A is similar to model B, except that it has only

one USB port and no Ethernet adapter.

For industrial applications, the Raspberry Pi Foundation provides the

Compute Module. The form factor is that of a laptop RAM memory board.

Users are expected to build a mainboard that is able to accommodate this

module. As this is a little difficult to use out of the box, we do not focus

on this model throughout this book. It is important to keep in mind that

any project working on one of the Raspberry Pi models could be trivially

extended to the Compute Module.

Besides the characteristics specific to any computer, the Raspberry

Pi also exposes various pins that can be connected to peripherals such as

sensors and actuators, making it easy to integrate into any IoT application.

When it comes to the pins exposed by the device, we have the following

types: GPIO, 3.3V, 5V, GND, PWM (software), SPI, I2C, and UART serial.

1�The software provided for the Raspberry Pi (Raspbian) is built for ARMv7, thus
the Raspberry Pi is considered an ARMv7 when talking about the software for it.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

49

The Raspberry Pi also has an SD card slot, as the SD card is usually

the only available storage for the device, similar to the hard drive in

computers. The SD card is the place where all the data is stored, including

the operating system. As the Raspberry Pi has USB connectors, one may

connect additional storage devices. Newer models are even able to boot

operating systems (OS) from a USB storage. Older models though are only

able to boot from the SD card.

Similarly to any other computer, the Raspberry Pi also runs an operating

system. While there are various operating systems and distributions

available for it, in this book we will use Raspbian, a Debian distribution that

the Raspberry Pi Foundation maintains and provides on their web site.

Figure 2-1.  Raspberry Pi version 42

2�www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TD42S27

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

http://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TD42S27

50

Due to its endurance and low price, the Raspberry Pi has become

widely popular as a prototyping and educational device and since the

release of the Compute Module, it has also been integrated into various

commercial and industrial applications. As of 2018, its sales reached more

than 19 million units.

Due to its characteristics and popularity, we have chosen the

Raspberry Pi as the main hardware platform for building the products we

will describe later in the book.

Note T he specific device we use for all the examples is a Raspberry
Pi 4. However, you can choose to work with any of the versions.

�About Wyliodrin STUDIO
Wyliodrin STUDIO is an integrated development environment designed

for prototyping IoT applications. It is a web-based application that is used

through a browser or by downloading and launching it locally.

Wyliodrin STUDIO supports various embedded devices such as the

Raspberry Pi, BeagleBone Black, NXP Rapid IoT Prototyping Kit, and

others, which can be programmed, controlled, and monitored through the

platform. As an IoT application management tool, Wyliodrin STUDIO fits

into the fourth category of the IoT application stack described.

Wyliodrin STUDIO is easy to install, and hardware devices can be

easily connected to it, without much additional configuration required.

Moreover, all the programs developed are stored locally, not on the

Raspberry Pi, which enables the users to share and deploy them on

multiple devices at once easily. These advantages are also the reasons

why we choose to use Wyliodrin STUDIO as the primary programming

environment for our applications.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

51

Wyliodrin STUDIO comes in two varieties: a local version that needs

to be downloaded and runs on your computer and a web version that can

be accessed from the browser. Both versions have a similar interface and

can be used to program and control the Raspberry Pi or other supported

devices. Both versions are designed to store the projects and other

information about the device on the local computer.

The main advantage of the web version is that it does not have to be

installed on a specific computer. Thus, you can access it from anywhere

and have control over your devices. Also, any platform updates are visible

with a simple refresh of the page, while for the local version updating

the application requires to re-download it. The downside is that it is

dependent on an Internet connection, whereas the local version can be

accessed only from your computer, but a local connection is enough to

get you running. The web version also implies a couple of extra steps in

the setup process, but it allows you to program and control the Raspberry

Pi without a physical connection to it. The local version works only if the

Raspberry Pi is in the same network as the computer where Wyliodrin

STUDIO is running.

Note T he browser version of Wyliodrin STUDIO stores projects
locally in the browser. This means that two different browsers on the
same computer will generate two different local storages. Sharing
projects directly between browsers is currently not possible.

Tip I f you have an Internet connection accessible for the Raspberry
Pi, we recommend using the web version of the Wyliodrin STUDIO as
it is easier to keep up to date with the latest platform changes.

The first step in programming your Raspberry Pi is to install the

Wyliodrin STUDIO IDE and connect the device to the platform.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

52

�Run Wyliodrin STUDIO
To get started with Wyliodrin STUDIO, we first need to access the following

web site: https://wyliodrin.studio. Here we have two options:

download the local version or access the web version. Depending on the

solution that we aim to use, we have to choose one of the two.

�Run Wyliodrin STUDIO Locally
In this case, we have the possibility to download an executable that runs

on the computer, with no dependency on an Internet connection. For

this to happen, we hit the download button and wait for the executable

to be downloaded. Once the download is complete, depending on the

computer’s operating system, you have to either launch the executable or

install the application to get running.

For Windows platforms, it is enough to launch the downloaded

executable and the installer starts automatically. When the process is

complete, Wyliodrin STUDIO can be launched from the taskbar.

For Linux-based platforms an AppImage file is downloaded. By

double-clicking the file, the application is launched.

For macOS systems, the downloaded file is of dmg type. By double-

clicking it you launch a pop-up that asks you to move the executable to the

Applications folder.

Note A s the application is not downloaded from the AppStore, to
open it for the first time, you might have to right-click the application
icon and select open. Then, a pop-up appears. After you select open
again, the application launches.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

https://wyliodrin.studio

53

�Run Wyliodrin STUDIO in the Browser
The second option is running Wyliodrin STUDIO directly in the browser. In

this case, you simply need to hit the Use Wyliodrin STUDIO in the browser

button and an instance of the application is launched.

Note T he main difference between the local and the web versions
of Wyliodrin STUDIO is the install process. Both versions store the
data on the local computer.

�Connect the Raspberry Pi to Wyliodrin
STUDIO
Now that we have the IDE in place, the next step is to connect the

Raspberry Pi so we can control it and deploy applications onto it.

The main requirement, in this case, is to have a Raspberry Pi that can

be connected either to the Internet or the local network and an SD card to

store the operating system.

Note I f you have a Raspberry Pi that is already running a Raspbian
image, you can skip to the “Manual Setup” section, which guides you
through the configuration process required to register the device to
Wyliodrin STUDIO.

As we already mentioned, the Raspberry Pi runs the operating system
from the SD card, so we first need to download the SD card image and write
it on the card. Since we are using Wyliodrin STUDIO, we do not download
the Raspbian image from the official web site, but we download the SD card
image that Wyliodrin STUDIO supports. This is the standard Raspbian Lite
distribution on top of which some scripts were configured to run, enabling

the Raspberry Pi to communicate with Wyliodrin STUDIO.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

54

Tip T o write the image on the SD card you have to connect it to
your computer. If your computer or laptop does not have an SD card
slot, you need a USB adaptor in order to do this.

To download the image, we have to access the following web site:

https://wyliodrinstudio.readthedocs.io and select Board Setup. Here

we find a link that starts the download of the SD card image. Once this

is done, we need to unzip the file to obtain the SD card image. The next

step is to write it on the SD card. For this, we can choose among various

applications. We recommend using Etcher.

To download Etcher, we go to www.balena.io/etcher and hit the download

button (Figure 2-2). Once the download is done, we can launch Etcher.

Figure 2-2.  Download Etcher

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

https://wyliodrinstudio.readthedocs.io
http://www.balena.io/etcher

55

Finally, we have to insert the SD card into the computer, select the

image file and the SD card as a source, and hit the Flash button (Figure 2-3).

Caution P lease be very careful when selecting the destination disk
as selecting a wrong one might risk erasing the data on your computer.

Now that the SD card contains the Wyliodrin STUDIO image, you
simply need to insert it into the Raspberry Pi, connect the device to the

network, and power it on.

Tip W e recommend using an Ethernet connection for the Raspberry
Pi. If you wish to use a Wi-Fi connection, you have to enable the SSH
and set it manually via a terminal.

�Manual Setup
In case you have previously configured your Raspberry Pi, you might not

want to re-flash the SD card to keep specific configurations. In this case,
you can run a set of commands that install the necessary tools on the

device so you can connect it to Wyliodrin STUDIO.

Figure 2-3.  The flashing process

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

56

Note W e are assuming here that your Raspberry Pi is running a
version of Raspbian.

To get started we need to open a shell on the Raspberry Pi, either by

directly controlling the device or via SSH. All the configurations are done

in the Raspberry Pi shell.

The commands to be used are thoroughly described at the following

link: https://wyliodrinstudio.readthedocs.io (select Board Setup).

After you finish following the tutorial on the web site, by rebooting the

Raspberry Pi you can connect it to Wyliodrin STUDIO. Based on the

Wyliodrin STUDIO version that you decided to use, the following steps are

described further on.

Tip T he download image depends on the Raspberry Pi version
you use.

�Connect the Raspberry Pi to the Local Version
of Wyliodrin STUDIO
If you are using the local version of Wyliodrin STUDIO, once you connect

the Raspberry Pi to the network, the device appears in the device list.

You need to hit the Connect button and a pop-up displaying the available

devices appear. To connect the device to Wyliodrin STUDIO we have

to select the desired Raspberry Pi and insert the required credentials

(Figure 2-4). This information is necessary as the local version of Wyliodrin

STUDIO uses the SSH protocol to communicate with the device. The result

is that any operation you do on the platform behaves as you would do it

directly on the device.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

https://wyliodrinstudio.readthedocs.io

57

Note T he default credentials for the Raspbian image you
downloaded are username: pi and password: raspberry.

When you connect to the device, the platform suggests that you change

the default password (Figure 2-5). To do this, you need to open the SHELL

tab, press any key to get it started, and run the passwd command. This is

important for security reasons and it prevents others to gain control over

your Pi.

�Connect the Raspberry Pi to Browser Version
of Wyliodrin STUDIO
To connect the Raspberry Pi to the web version of Wyliodrin STUDIO,

an Internet connection is required. Also, to enable the communication

between the IDE and the device, a configuration file, called wyliodrin.json,

Figure 2-4.  Connect to Raspberry Pi

Figure 2-5.  Change credentials suggestion

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

58

needs to be stored on the SD card. This file contains information

identifying the device so that it is recognized by the platform, but also

contains information about the platform so the device knows that it is

communicating with.

To obtain the wyliodrin.json file, inside the web version of Wyliodrin

STUDIO we need to hit the Connect button and select Add Web device.

This shows a pop-up requesting for the device name (Figure 2-6).

As we insert the necessary information a JSON structure is generated

based on this. The structure contains the following information:

•	 server – The endpoint with which the device

communicates.

•	 id – The name of the device; this can be changed to any

string you prefer.

Figure 2-6.  Add a new device to connect to

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

59

•	 token – The unique identifier of the device; it is

automatically generated by the Wyliodrin STUDIO to

identify the user and should never be changed.

The generated JSON needs to be copied into a file called wyliodrin.json,

and then the file needs to be placed on the SD card in the boot partition.

To achieve this, we need to insert the flashed SD card into the computer

and the partition opens automatically. We copy the file there and the card

is ready to be inserted into the Raspberry Pi (Figure 2-7).

Once the file is on the SD card, we can insert the card in the Raspberry

Pi, connect it to the Internet, and power it on. The final step is to select

again the Connect button from the Wyliodrin STUDIO platform and the

Raspberry Pi should appear in the devices list (Figure 2-8). By selecting the

device, you initialize the connection to the platform.

Figure 2-7.  wyliodrin.json file stored on the boot partition

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

60

�Overview of Wyliodrin STUDIO
Now that we have installed the Wyliodrin STUDIO interface and connected

the Raspberry Pi to it, let us see some of the basic operations that we can

do with the Pi using the IDE.

First, we have the top bar that enables us to do some basic operations

such as:

•	 Projects Library – Launches a pop-up that allows us

to create or import applications and to open the ones

already available.

Figure 2-8.  Available devices list

Figure 2-9.  Wyliodrin STUDIO interface

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

61

•	 Task Manager – Visualize the processes running on

the Raspberry Pi and stop any of them with a press of a

button. See Figure 2-9.

•	 Package Manager – View, add, and remove Python or

Node.js packages in a visual manner.

•	 Network Manager – Connect the device to a different

network; it is especially useful for connecting the

Raspberry Pi to a Wi-Fi network without the need to

use shell commands.

•	 Disconnect – Disconnects, reboots, or powers off the

connected device.

Caution  Modifying network settings might disconnect your Raspberry
Pi from the network and from Wyliodrin STUDIO. Please act carefully.

Further on, once we open a new project, we can access the five tabs

available:

•	 Application – The tab where we write the actual source

code of the application; depending on the chosen

programming language, this can be similar to a text

editor or it can support a visual programming interface

based on blocks and other elements.

•	 Dashboard – This tab is designed for easy and fast

debugging of IoT systems based on visual graphs such

as sliders, lines, speedometers, or thermometers.

The dashboard plots data coming from the running

application to help us better visualize the values coming

from the sensors; however, the dashboard does not

store the data it receives, showing only instant values.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

62

•	 Notebook – Used for prototyping and documenting

the application, it allows developers to write the

documentation for the application they are building

while also trying out snippets of code. The code

snippets can be integrated in the documentation and

can be run on the connected device by pressing one

button.

•	 Pin Layout – Displays the pins and their numbering

for the device connected to the Wyliodrin STUDIO

platform.

•	 Shell – Enables us to open a direct terminal into the

device, which gives us full control over the Raspberry Pi

and enables us to carry out advanced operations, such

as installing new libraries.

Other configuration can be done via the menu located on the top-

left side of the Wyliodrin STUDIO platform. There we can use a resistor

calculator, which helps us compute the resistance based on the colors

or helps us identify the resistor we need. Also, we can set the IDE into

advanced or simple mode. In the simple mode, we can write one-file

applications that get deployed on the device, while in advanced mode we

can create directories and multiple files to build complex applications. In

our case, as in the next chapters we build complex applications, we use the

advanced mode of the editor.

�Deploy Applications on the Raspberry Pi
Now that we are familiar with the interface and how to control the

Raspberry Pi using Wyliodrin STUDIO, let us write our first application and

deploy it on the device. Since in the next chapters we will use JavaScript as

the main programming language, we write a simple Node.js application

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

63

that displays a text in the console and then we import an external library to

make an LED blink.

First, we need to create a new JavaScript application (Figure 2-10).

Once the application is created, we open it and we already have the first

line writing a text in the console generated.

Caution W hen you try to create a new project in the browser
version, you are asked to enable the persistent storage. This is
required so the browser can store all your projects, otherwise you risk
having projects deleted randomly. Some browsers might not support
the persistent storage option enabled, in this case we recommend
using a different browser or downloading your projects periodically.

To deploy the application on the device, we simply need to press the

Run button and we see the output in the console (Figure 2-11).

Figure 2-10.  Create a new application

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

64

Further on, to make an LED blink, we need to use an external library

for controlling the Raspberry Pi pins. For JavaScript, one of the most used

pin-control libraries is onoff.

The first step in using the library is to install it on the device. For this,

we can use the Package Manager option which allows us to select among

available libraries for both Python and Node.js (Figure 2-12). In our case,

after we hit the Package Manager button, we select Node.js and install the

onoff library (Figure 2-13).

Figure 2-11.  Hello World application output

Figure 2-12.  Package manager location

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

65

Note T his installs the library globally. While this is not the
recommended approach for a production application, it works very
well for prototyping purposes, allowing for fast development.

As we assured that the required library is installed on the system, in the

main.js file we have imported the onoff module and then initialized pin 17

as output. Using the setInterval() function we used a one-second delay to

write 1 or 0 on the pin, leading to the LED blinking. See Listing 2-1 for the

full source code.

Figure 2-13.  Install the onoff library

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

66

To choose the pins that we aim to connect the LED on, we can

open the PIN LAYOUT tab and we see a schematic of the pins and their

numbering. All general-purpose input/output (GPIO) pins are marked as

BCM X, where X is the number that we need to use inside our code.

Tip T he pins that have parenthesis next to BCM can also be
used for advanced peripherals, not only as GPIO. This is why we
recommend you use the GPIO-only pins.

Listing 2-1.  The Node.js code that makes the LED blink

//import the onoff module

const Gpio = require('onoff').Gpio;

//initialize pin 17 as output

const led = new Gpio(17, 'out');

//initialize the value to be written on the pin

let value = 0;

console.log('Hello from JavaScript');

//call a function every 1000 milliseconds

setInterval (function (){

 //write the value on the pin

 led.writeSync(value);

 //change value from 0 to 1 and vice versa

 value = 1-value;

}, 1000);

After pressing the Run button, we should see the LED connected on

pin GPIO 17 blinking.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

67

�Summary
In this chapter we went through the steps necessary to get started with

developing simple IoT applications. As in the next chapters we will focus

on the prototyping phase of building commercial and industrial systems,

we choose the Raspberry Pi as the hardware platform and Wyliodrin

STUDIO as the management interface.

The Raspberry Pi is one of the most popular hardware platforms

used in education and for prototyping purposes. For further reading, we

recommend browsing through the web site www.raspberrypi.org/ to

explore the various Raspberry Pi devices available on the market.

Wyliodrin STUDIO is an open source, web-based IDE for fast

prototyping of IoT applications. The platform comes in two varieties: a

local version and a web version and is easy to use for both beginners and

advanced developers. Also, as it is open source, it can be extended and

integrated into other applications. For more information on the platform,

we recommend visiting the official web site https://wyliodrin.studio.

After the setup process is done and the Raspberry Pi is successfully

connected to the Wyliodrin STUDIO platform, we can easily install

packages, control the device via a shell, and most importantly deploy

applications.

In the next chapters we deal with the development of the three main

components of an IoT application (hardware, software, and network) and

use Wyliodrin STUDIO as the deployment and management tool for the

application.

Chapter 2 Getting Started with the Raspberry Pi and Wyliodrin STUDIO

http://www.raspberrypi.org/
https://wyliodrin.studio

69© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3_3

CHAPTER 3

Smart Digital Signage
System
In this chapter, we will go through the steps necessary to prototype a

digital signage system that is connected to the Internet so you can remotely

update the content it displays.

The ability of governments and businesses to mass-share information

is of paramount importance. This is why cities are populated with

billboards and digital panels consisting of connected screens that display

dynamic commercials, timetables, environmental variables (e.g., pollution

level), traffic information (such as accidents or roadblocks), or other

informative materials.

A classic example of large-scale smart digital signage is Times Square

in New York City, which is decorated from top to bottom with billboards

and advertisements, among which the most iconic are the seven-

story high NASDAQ sign (from 2000) and the Coca-Cola and Samsung

advertisements (both from 2017). There are also recent changes, as work

is underway to finalize the development of 20 Times Square, which will

host a 1.672 square meter (or 18.000 square foot) screen made up of 16

million LEDs. Other worldwide examples include the Shibuya Crossing

in Shibuya City, Tokyo, Japan; the COEX (convention, exhibition, and

shopping complex) and World Trade Center area in Seoul, South Korea; or

the Piccadilly Circus area in London, UK.

70

All digital signage systems are based on modern electronics and

software components, and they are a particularly good example of

the potential that IoT holds in real-world applications. Integrating IoT

technologies into the signage systems has several specific advantages:

•	 Create a cost-effective system that can function

correctly for prolonged time periods and where

ongoing maintenance can be accomplished efficiently

as diagnosis information can be sent by the system

periodically to a central maintenance unit where global

repair decisions can be made.

•	 Create a context-aware system where the information

shared can be delivered in real time and dynamically

adapted in time to the target public and therefore

significantly improving the effectiveness of the system.

•	 Create an interactive system by allowing personalized

content (or behavior) to be created and posted by

people through their social media accounts.

•	 Given an interactive system, analyze though data

analytics the long-term interaction between the

system and its users to better understand the users and

improve the system.

�Necessary Components
To build the digital signage system, you will need the following

components:

•	 Raspberry Pi connected to the Internet and to

Wyliodrin STUDIO.

•	 Any screen that can be connected via HDMI.

Chapter 3 Smart Digital Signage System

71

If you do not have an HDMI screen, you can also use a touchscreen

display. For more information on how to connect the display to the

Raspberry Pi, we recommend Pi Hut’s tutorial.1

To get started with building a new application, you need to register the

Raspberry Pi in the Wyliodrin STUDIO platform. This allows us to easily

run the application on the device. If you have already followed Chapter 2

in this book, you should have a Pi that is registered on this platform.

Otherwise, we recommend following the tutorial in Chapter 2.

�The Application Architecture
Building applications that require a user interface can be done by

using various technologies and in a multitude of different ways. The

main options when building a UI for the Raspberry Pi are the following

libraries: GTK+, Qt, and web-based libraries. GTK+ is a reliable option

that provides means of building classic windows and buttons UI and

requires C programming skills.2 Qt is by far one of the best choices,

supporting animations, video acceleration, and all the modern UI

elements. The downside is that it requires payment of royalties for usage

on embedded devices. This is why we choose to use web technologies

for this book. Even though these libraries need a little more computing

power, these technologies are open and free to use and run on most

of the platforms. Moreover, we can easily state that today most of the

applications that we use are web based, mainly because they can

be run on any architecture. The result is that web technologies are

under constant development, and there is a multitude of libraries

1�thepihut.com/blogs/raspberry-pi-tutorials/45295044-raspberry-pi-7-touch-
screen-assembly-guide

2�While there are some bindings for other languages like Python or Node.js, these
do not cover all the libraries.

Chapter 3 Smart Digital Signage System

72

and frameworks available, which allow developers to build a complex

interface. In addition, the number of developers with the knowledge to

build such applications is extremely high.

As the Raspberry Pi is a pretty powerful device, we choose to build the

smart signage system as a web application. Since web technologies can

run on any device that is able to run a browser, the UI is runnable on most

embedded devices that run Linux.

�Electron
The smart signage application that we are going to build is designed just

like a regular web interface, which means that we need a browser to run it.

While for regular web applications, where the user has a keyboard and a

mouse, launching the browser to access the application is normal, for this

use case we aim to run our smart signage application so it looks like it is

the only one running on the system. Imagine the users seeing the browser

and the interface inside it. It is obvious that this is not the desired outcome.

Therefore, we need a way of launching a web application but without

the classical browser. This is where the Electron framework comes in hand.

Electron is a framework that allows for web applications to be run like

desktop applications. Many popular applications, which behave like native

apps, are actually developed on top of Electron. Some of such applications

are Visual Studio Code3 or Slack.4

By using Electron, we create a simple web application and launch it as

a full-screen app so users see only the information that we aim to display.

3�https://code.visualstudio.com/
4�https://slack.com/

Chapter 3 Smart Digital Signage System

https://code.visualstudio.com/
https://slack.com/

73

�The Application
To build a new application, we first need to access the Wyliodrin STUDIO

platform and create a new JavaScript project.

As we already mentioned, the application we aim to build is a web app

that runs on the device using the Electron framework. This implies that the

project we just created consists of several files and directories. Therefore,

the first step is to set Wyliodrin STUDIO into advanced mode (Figure 3-1)

and create a new folder called UI. This is where all files related to the web

application are stored.

To create a new folder, we have to right-click the name of the project

and select the New folder option. Insert the desired folder name and the

folder is created.

�Source Code
Now that we are familiar with the structure, the next step is to build the

actual application. At first, the purpose is to create an app that displays

some text on the screen.

Figure 3-1.  Switch to advanced mode

Chapter 3 Smart Digital Signage System

74

As for the beginning we aim to create a simple static interface, we

generate a file called index.html. Here we use some standard HTML tags

to print the desired text.

The next step is to launch the application. If we were to talk about a

regular web app, we would have a server that would return the HTML

files to be rendered by the browser. However, in our case, the browser is

replaced with the electron framework, which can run a JavaScript (Node.

js) application that renders the interface. Therefore, we need to create a

main.js file which launches the UI.

�The index.html File

To get started, we need to create a file called index.html in the UI directory

(Listing 3-1). Here we write the text This is my first smart billboard

application!

Listing 3-1.  The HTML source code

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Welcome</title>

 </head>

 <body>

 <center>This is my first smart billboard application!</center>

 </body>

</html>

The code is basic HTML that displays some centered text.

Chapter 3 Smart Digital Signage System

75

�The main.js File

Once the HTML file is created, we need to build the Node.js script that

actually launches the application (Listing 3-2).

Note T he main.js file is a Node.js script derived from Electron’s
examples.

Running an Electron application requires at least two processes: the

main process and a render process. The main process is responsible for

handling all web pages and launching them, while the render process is

specific to each web page, and it handles how the web page is displayed.

Therefore, when launching Electron, we have one main process and as

many rendering processes as the number of web pages that the main

process will launch.

While the rendering process is related to the HTML, JavaScript, and

CSS files, the main process needs to be defined in a Node.js file that

is executed by the Electron framework. The main process creates and

destroys browser windows and handles their properties; all the rest is done

within each window by the rendering process.

Listing 3-2.  The main.js file

const electron = require('electron');

const path = require('path');

const url = require('url');

// Module to control application life.

const app = electron.app;

// Module to create native browser window.

const BrowserWindow = electron.BrowserWindow;

Chapter 3 Smart Digital Signage System

76

/* Keep a global reference of the window object, if you don't,

the window will be closed automatically when the JavaScript

object is garbage collected.*/

let mainWindow;

function createWindow ()

{

 // Create the browser window.

 mainWindow = new BrowserWindow({

 height: 600,

 width: 800,

 frame: false,

 webPreferences: {

 nodeIntegration: true

 }

 });

 // and load the index.html of the app.

 mainWindow.loadURL(url.format({

 pathname: path.join(__dirname, 'UI/index.html'),

 protocol: 'file:',

 slashes: true

 }));

 // Emitted when the window is closed.

 mainWindow.on('closed', function () {

 �/* Dereference the window object, usually you would store

windows in an array if your app supports multi windows,

this is the time when you should delete the corresponding

element.*/

 mainWindow = null;

 });

}

app.on('ready', createWindow);

Chapter 3 Smart Digital Signage System

77

// Quit when all windows are closed.

app.on('window-all-closed', function () {

 app.quit();

});

app.on('activate', function () {

 if (mainWindow === null) {

 createWindow();

 }

});

Now let us break the main application apart so we can discuss the

essential components and gain a better understanding of the main.js file.

As the main process is in charge of managing all browser windows and

the overall application, this requires us to create a new window to display.

To achieve this, we need to import the Electron module, which exports all

necessary sub-modules (Listing 3-3). The modules that Electron exports

and which are important to us are app and BrowserWindow. The app

module stores all information related to the application, allowing us to

control its life cycle. If you are familiar with building UI applications, you

should notice a familiar pattern, where the app object generates events to

which we can assign specific functions. In addition, the BrowserWindow

module allows us to handle the creation and destruction of new browser

windows within the main process.

Listing 3-3.  Import and create all necessary structures

const electron = require('electron');

// Module to control application life.

const app = electron.app;

// Class that represents a browser window.

const BrowserWindow = electron.BrowserWindow;

Chapter 3 Smart Digital Signage System

78

Further on, we import other necessary modules. path and url enable

us to generate the link toward the index.html file so the browser can open

it. Next, we create a new browser window where the index.html file is

opened. Here, we need to specify the screen’s dimensions. For this, you

need to check your display’s characteristics and set the values accordingly.

We also specified that we want to have the window frame disabled. This

hides the menu bar on the top. The final property of the window element,

nodeIntegration, allows us to run Node.js files instead of simple JavaScript.

As a result, we can use functions specific to Node.js (e.g., require()) in the

JavaScript files related to the user interface (Listing 3-4).

Listing 3-4.  Create the browser window

const path = require('path');

const url = require('url');

// Create the browser window.

mainWindow = new BrowserWindow({

width: 1180,

 height: 800,

 frame: false,

 webPreferences: {

 nodeIntegration: true }

 });

Next, we generate a URL to the main.html file and load it inside the

window (Listing 3-5).

Listing 3-5.  Load the UI

 mainWindow.loadURL(url.format({

 pathname: path.join(__dirname, 'UI/index.html'),

 protocol: 'file:',

 slashes: true

 }));

Chapter 3 Smart Digital Signage System

79

Once we defined the createWindow() function and clearly specified

how the new browser window should be handled, we can manage the

application life cycle and generate new windows accordingly. Since the

Raspberry Pi is meant to be connected to a noninteractive screen and

there are no other UI applications running on it, we can consider, for now,

that once the Electron framework has finished loading, we can create

a new window, which remains on the screen. This is why we are only

interested in the ready event, which is triggered when Electron has finished

its initialization process: app.on('ready', createWindow);

�Installing the Necessary Libraries
Now that all the source files are ready to be deployed, the final step

consists of running the application.

First, we need to install the Electron framework (Figure 3-2). Electron

comes as a Node.js package that needs to be installed globally on the

device. This is where the Package Manager comes in handy. To install

Electron, we need to launch the Package Manager and install it from the

Node.js tab.

Note T here are ways to specify all the libraries necessary for a
project; we will discuss this later. For now, we install all the libraries
globally.

Chapter 3 Smart Digital Signage System

80

Caution  When this book was written, the latest Electron version
does not run on the Raspberry Pi. Therefore, in case you fail to
run the application, we recommend you open the SHELL tab and
type the command: sudo npm install -g --unsafe-perm
electron@6. This installs an older version of the library, which is
certain to work on the Raspberry Pi device.

Note I f the Raspbian image on the SD card is the Lite version
(no UI), we also need to install the necessary libraries to run a user
interface.

Figure 3-2.  Installing Electron

Chapter 3 Smart Digital Signage System

81

The main executable that we need to run is xinit. This is the application

that starts the user interface, which is required to display anything on the

screen. You need to understand that any computer or embedded device

uses various applications that handle all UI operations. While for your

laptop or computer, xinit or a similar application is launched at startup, in

this case, we have a Lite image that does not do that. Furthermore, when

launching the application, we first need to start the user interface.

To install the xinit and other related tools, we need to run the following

commands in the SHELL tab (Listing 3-6).

Listing 3-6.  Install necessary libraries

sudo apt-get update

sudo apt-cache search libxss1

sudo apt-get install -y xinit xserver-xorg-core xserver-

xorg-input-all xserver-xorg-video-fbturbo libgtk-3-0 libnss3

libnspr4 libgconf-2-4 libxtst6 libasound2 libxss1 --no-install-

recommends

Note  Commands might vary a little depending on the Raspbian
version that your Pi runs.

�Run the Application
For a simple application, when we click the Run button, Wyliodrin STUDIO

deploys the project files on the device and executes the main.js file.

In this specific case, the run process is more complicated. As we already

mentioned, we first need to launch the xinit process and then execute the

source files.

Chapter 3 Smart Digital Signage System

82

To execute the main file, Wyliodrin STUDIO generates a makefile and

executes the make run command on the devices. However, if a makefile

already exists in the project hierarchy, this is used by the platform. We take

advantage of this option and create our custom makefile to replace the

run command (Listing 3-7). The file needs to be placed at the root of the

project file hierarchy (Figure 3-3).

In order for the makefile to be properly run, it is essential to ensure we

respect the file format. This requires the file to start with a directive (run

in our case), followed by a colon symbol. In the following code, we need

to insert one TAB, followed by the command to be executed. If we want to

execute multiple commands under the same directive, each needs to be

placed on a different line, starting with a TAB.

Listing 3-7.  The makefile

run:

 xinit /usr/bin/electron main.js --no-sandbox -- -nocursor

Note A makefile is a configuration file used for build automation.
It contains lists of commands grouped under sets of directives.

Figure 3-3.  The project file hierarchy

Chapter 3 Smart Digital Signage System

83

Inside the makefile, we specified the run directive, which starts the

application. This command first launches xinit.

Further on, we specify the application that we wish the user interface

to run, which is Electron (we need to provide the full path to the

executable; otherwise xinit will not find it), then we pass the main process

file as a parameter to Electron.

The remaining step is to mention that we do not want the cursor to

be displayed on the screen and that xinit should consider the screen as

a touchscreen. This requires us to pass the -nocursor parameter to the

xinit. Since both xinit and Electron can get parameters, we need a way

of specifying that the last parameter belongs to xinit and not Electron.

Therefore, we placed the -- characters before it.

�Connect to the Internet
The next step in building the smart signage system is to make it smart and

connect it to the Internet. This allows us to download useful information

and update the display accordingly.

For this use case, we aim to build a smart weather panel, which would

present information such as the weather status or the current temperature.

To make sure the data displayed is correct, the panel updates the

information every 15 minutes.

As the system we build is similar to the one described earlier, there are

no other changes except the ones in the source files. We still use Electron

to run the web application, which now becomes a little more complicated.

�Application Architecture

The main improvement brought to this application is that we use a web

API in order to get real-time data about the weather and then replace the

displayed information with the newly obtained one. This requires replacing

the static text with one that can be changed from within the application.

Chapter 3 Smart Digital Signage System

84

Since we have to write JavaScript code to implement the application

logic, we can make use of the multitude of frameworks available to ease the

development process. You might be familiar with some of these frameworks:

jQuery, Angular, Vue. All of these are designed to simplify the manipulation

of the HTML files and make it easy to generate dynamic content.

If you are familiar with any of these frameworks, you can implement

the one you find the most comfortable to use. In this book, we decided to

use Vue. To learn more about this framework and get familiar with it, we

recommend going through the Vue.js tutorial.5

�Source Files

The first file that we need to alter to obtain a smart billboard is index.html
(Listing 3-8). Here we need to replace the static text with one that changes

every time new information is downloaded. This is why we added the

{{weather}} filed, which is replaced with the value of the weather variable

during runtime.

Listing 3-8.  The interactive HTML source code

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Welcome</title>

 <script src="https://cdn.jsdelivr.net/npm/vue"></script>

 �<script src="https://cdnjs.cloudflare.com/ajax/libs/

axios/0.19.0/axios.js"></script>

 </head>

 <body>

5�https://vuejs.org/v2/guide

Chapter 3 Smart Digital Signage System

https://vuejs.org/v2/guide

85

 <div id="app">

 <center> The weather outside is {{weather}}. </center>

 <label> {{error}}</label>

 </div>

 <script src="app.js"></script>

 </body>

</html>

Additionally, we included two essential libraries in the project: vue, on

which the whole application is based, and ajax, which is used to retrieve

data from the weather API. Finally, we imported the app.js file that we

implement next.

Finally, the JavaScript code has to be linked to an element in the HTML

file; this is why we created a div having the app ID.

The JavaScript file creates a Vue component that exports the weather

variable, which is replaced in the HTML structure. Moreover, due to Vue’s

properties, each time the variable changes its value, the interface will

automatically update (Listing 3-9).

Listing 3-9.  Set the application to update according to the weather data

var app = new Vue ({

 el: '#app',

 data () {

 return {

 weather: null,

 error: "

 }

},

Chapter 3 Smart Digital Signage System

86

created () {

 let getData = async ()=>{

 try{

 �let response = await axios.get('https://samples.

openweathermap.org/data/2.5/weather?q=London,uk&appid=b

6907d289e10d714a6e88b30761fae22');

 this.weather = response.data.weather[0].main;

 }

 catch (err){

 this.error = err;

 }

 setTimeout (getData, 1000*60*15);

 };

 getData();

}

});

Let us break this code into smaller pieces to better understand it.

Listing 3-10.  Create a new Vue application

var app = new Vue ({

 el: '#app',

 data () {

 return {

 weather: null,

 error: "

 }

 }

First, we have to create a new Vue component and assign it to a tag in

the HTML file (Listing 3-10). The Vue component receives a JSON object

containing various fields. The first field, el, is the link to the tag. We are

Chapter 3 Smart Digital Signage System

87

using here the jQuery selector6 names. Next, we have the data field, where

we have to declare all variables that are referenced in the HTML file, in

our case, weather. Finally, we declared a string variable to store any errors

coming from the web API.

Listing 3-11.  Get online data

created () {

 let getData = async ()=>{

 try{

 �let response = await axios.get('https://samples.

openweathermap.org/data/2.5/weather?q=London,uk&appid=b

6907d289e10d714a6e88b30761fae22');

 this.weather = response.data.weather[0].main;

 }

 catch (err){

 this.error = err;

 }

 setTimeout (getData, 1000*60*15);

 };

 getData();

}

Next, we have the created field, which is a function that is called once

the HTML structure has finished loading (Listing 3-11). Here, we define

the getData() function, which uses the axios module to retrieve data from

the web service. The await keyword stops the function from executing

further commands until the requested information is returned. Next, we

store the data into the weather variable and set the function to run again in

15 minutes, using setTimeout(). In case there are any errors, the catch()

6�www.w3schools.com/jquery/jquery_ref_selectors.asp

Chapter 3 Smart Digital Signage System

http://www.w3schools.com/jquery/jquery_ref_selectors.asp

88

function is called, where we store the error in the global variable to be

displayed on the screen.

For the weather data, we use one of the open web APIs.7 In order to

use the API, you need to create an account and obtain a token. For testing

purposes, we decided to use one of the sample URLs, which works without

the need to authenticate yourself. Therefore, we made a GET request to

get the data (response.data), which looks like in the following structure

(Listing 3-12).

Listing 3-12.  The response structure

{

 "coord":{

 "lon":-0.13,

 "lat":51.51

 },

 "weather":[

 {

 "id":300,

 "main":"Drizzle",

 "description":"light intensity drizzle",

 "icon":"09d"

 }

],

 "base":"stations",

 "main":{

 "temp":280.32,

 "pressure":1012,

 "humidity":81,

7�https://openweathermap.org

Chapter 3 Smart Digital Signage System

https://openweathermap.org

89

 "temp_min":279.15,

 "temp_max":281.15

 },

 "visibility":10000,

 "wind":{

 "speed":4.1,

 "deg":80

 },

 "clouds":{

 "all":90

 },

 "dt":1485789600,

 "sys":{

 "type":1,

 "id":5091,

 "message":0.0103,

 "country":"GB",

 "sunrise":1485762037,

 "sunset":1485794875

 },

 "id":2643743,

 "name":"London",

 "cod":200

}

From the obtained data, we extracted the first element from the

weather field, then the main field to get Drizzle, which is also the word

that appears on the screen once you run the application (Figure 3-4).

Figure 3-4.  The resulting interface

Chapter 3 Smart Digital Signage System

90

�Arrange the Interface
As a final step, to bring our application closer to a billboard system, we

improve the user interface by adding a couple of extra elements, such as

style definitions, images, and colors.

The first file that we change is index.html (Listing 3-13).

Listing 3-13.  Improved index.html file

<html lang="en">

<head>

 <title>Welcome</title>

 <style>

 �body {background: black; margin: 0; overflow: hidden;

padding: 0; position:relative; font-size:21px; font-

weight:300; color:white;}

 �#app {margin: auto; overflow: hidden; padding: 0;

position:relative; width:100%; height:100%;}

 �.app-box{top:0; bottom:0; left:0; right:0; margin:auto;

display:block; padding:30px; position:absolute; height:

fit-content; width: fit-content;}

 .w-status {padding:50px 0;}

 �.error {position:absolute; bottom:0; text-align:center;

width:100%; padding:20px 0; left:0; right:0;

background:red; color:white;}

 </style>

 <script src="https://cdn.jsdelivr.net/npm/vue"></script>

 �<script src="https://cdnjs.cloudflare.com/ajax/libs/

axios/0.19.0/axios.js"></script>

</head>

Chapter 3 Smart Digital Signage System

91

<body>

 <div id="app">

 <div class="app-box">

 <center>

 �<div class="w-status">The weather

outside is {{weather}}.</div>

 �<div>The current temperature is

{{temperature}} Fahrenheit.</div>

 </center>

 </div>

 <label class="error">{{error}}</label>

 </div>

 <script src="app.js"></script>

</body>

</html>

Here we first added the <style> tag where we defined various style

elements that are attributed to the tags in the <body> section. Further on,

we added the tag that loads an image. Since we used the v-bind

directive, we can replace the path to the image with a variable that we

change based on the weather. Finally, we added the outside temperature to

the displayed information.

Next, we updated the app.js file (Listing 3-14). Here we declared

the temperature variable where we store the temperature returned by

the web service. As the value we get is in kelvin (1K, the standard unit of

measurement for temperature), we applied a formula to obtain Fahrenheit

degrees. We also update the imgUrl variable to store the path to a different

image based on the weather.

Chapter 3 Smart Digital Signage System

92

Listing 3-14.  The complete app.js file

var app = new Vue ({

 el: '#app',

 data () {

 return {

 weather: null,

 temperature: 0,

 imgUrl: 'img/sun.png',

 error: 'No errors'

 }

},

created () {

 let getData = async ()=>{

 try{

 �let response = await axios.get('https://samples.

openweathermap.org/data/2.5/weather?q=London,uk&appid=b

6907d289e10d714a6e88b30761fae22');

 this.weather = response.data.weather[0].main;

 if (this.weather === 'Drizzle' || this.weather === 'Rain')

 this.imgUrl = 'img/rain.png';

 else if (this.weather === 'Sun')

 this.imgUrl = 'img/sun.png';

 this.temperature = response.data.main.temp * 9/5 - 459.67;

 }

 catch (err){

 this.error = err;

 }

 setTimeout (getData, 1000*60*15);

 };

 getData();

}

});

Chapter 3 Smart Digital Signage System

93

The final step to obtaining a working application is to upload

the images we use to the project hierarchy. For this, we recommend

downloading images that represent different weather types, create a new

directory called img, inside UI, and upload the pictures there.

Tip I n our example we used Flaticon8 to find nice weather images.

Now, when we run the application, we have a working weather signage

system (Figure 3-5).

Figure 3-5.  The smart signage interface

8�www.flaticon.com/

Chapter 3 Smart Digital Signage System

http://www.flaticon.com/

94

�Summary
In this chapter, we went through the basics of running a web application

interface on the Raspberry Pi to create a smart signage system. This can be

used in a multitude of use cases, from the smart weather panel to a traffic

monitoring system or an advertisement panel.

Note T he proof-of-concept application developed in this chapter
might run into some trouble for very large signage systems or when
highly dynamic (video) content needs to be displayed in real time.
Computational aspects of the underlying hardware platform need
to be taken into account in the design phase of the solution (e.g.,
transferring, decoding, and displaying MPEG2/MPEG4/WMV video
streams in real time on display with a very large number of LEDs or
pixels might be very problematic for a Raspberry Pi).

To customize the application, we recommend to read more about the

Vue framework and add some CSS to the HTML file. Also, by exploring

the OpenWeather API or other similar services, you can display all sorts of

different data.

Chapter 3 Smart Digital Signage System

95© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3_4

CHAPTER 4

Smart Soda
Dispenser System
One of the advantages that the IoT brings to many industries is the

possibility of remotely monitoring, diagnosing, and controlling various

equipment. For industrial systems, this implies that we can prevent or

quickly solve malfunctions, while for consumer devices, this also results

in more accessible ways of tracking the gadgets and adapting them to the

user behavior.

In this chapter, we aim to build a smart soda dispenser, which is

connected to the Internet and sends real-time data about the availability of

the products to a web service where information is displayed in a graphical

interface.

A soda dispenser is just a type of vending machine which provides

specific soda products (cans and bottles). While vending machines

appeared in England around 1880 with the purpose of selling postcards,

they were soon diversified to a varied list of products and after the 1950s

became part of the urban landscape in most big cities around the world.

The number of soda dispensers specifically exploded with the success of

several American soda companies whose business expanded in the United

States and Europe, and then worldwide. A similar expansion happened

with the advent of bottled water, which needs to be available (and

chilled), especially in hot weather. Today, soda dispensers can be found

96

in game centers and stadiums, hospitals, schools, and universities, any

transportation hubs such as airports and train stations, and, in general,

on streets in any dense urban area. Soda fountains had also seen great

commercial success from the 1830s when they began to be sold and used

in bars and restaurants behind the counter.

Historically, applications similar to soda dispensers are among the

first examples of IoT thinking. In 1992, a group of students and researchers

from Cambridge University was annoyed with the fact that the coffee pot

was in a shared room (the Trojan room) and many times they would walk

to this room just to find that the coffee was over. They set up a camera that

would photograph the coffee machine three times every minute and would

make the photos available to the whole network via a web page. This way,

everyone could check the availability of coffee before making their way to

the Trojan room. This simple application is referenced today as one of the

earliest IoT devices and is viewed as the grandfather of smart dispensing

machines.

To build a smart soda dispenser, we extend the notions presented in

the previous project, so this time we have an advanced web-based user

interface where the user can interact with the touchscreen to choose

between different beverages and turn on and off the pump. The amount of

drinks consumed is sent to a web service where we can monitor the filling

rate of the soda tank. Later, consumption rates collected from multiple

dispensers over a long period of time can provide insights into the habits of

the customers and the service maintenance times for the machines.

�Necessary Components
To build the smart soda dispenser, you will need the following

components:

•	 Raspberry Pi connected to the Internet and to

Wyliodrin STUDIO.

Chapter 4 Smart Soda Dispenser System

97

•	 Touchscreen display – Used to show the interface and

control the system. We recommend the Raspberry Pi

touch display1; Pi Hut has a good tutorial on how to

connect the display.2

•	 Three KY-019 relays or similar and three DC water

pumps3 – These allow the liquid flow. There is also

the option to use only water pumps; it depends on the

components you have.

•	 DC Barrel Adapter.4

•	 5V power source.

•	 Breadboard.

•	 Jumper wires.

Note T his is a very simple soda dispenser, meant to detail the IoT
software component. For a real machine, the mechanics and control
elements are different. Though different, the way the Raspberry Pi
interacts with the machine mechanics is more or less similar to this
example. It might be either via GPIO (this example), UART, SPI, or
I2C. We will discuss these details in the following chapters of this book.

1�www.raspberrypi.org/products/raspberry-pi-touch-display
2�thepihut.com/blogs/raspberry-pi-tutorials/45295044-raspberry-pi-7-touch-
screen-assembly-guide

3�www.amazon.com/Water-Northbear-Ultra-quiet-Brushless-Submersible/dp/
B01N9FNK23

4�www.sparkfun.com/products/10288

Chapter 4 Smart Soda Dispenser System

http://www.raspberrypi.org/products/raspberry-pi-touch-display
http://www.amazon.com/Water-Northbear-Ultra-quiet-Brushless-Submersible/dp/B01N9FNK23
http://www.amazon.com/Water-Northbear-Ultra-quiet-Brushless-Submersible/dp/B01N9FNK23
http://www.sparkfun.com/products/10288

98

�Interactive Soda Dispenser
The first step in building the soda dispenser system is to create the

graphical interface that user interacts with. For this, we can start from

the example in the previous chapter, where we have built a simple web

interface that runs on the Raspberry Pi using the electron framework.

First, we create a new JavaScript application inside Wyliodrin

STUDIO. Next, we duplicate the application structure from Chapter 3,

where we have a UI directory containing a file called index.html and

another one called app.js.

�The main.js File
The first file that we have to define is main.js. From the previous chapter,

we are already familiar with this file, which is a Node.js script that launches

the electron application. As the main structure of the application remains

the same as the previous one, there is no need to change the contents

of the file. However, the system we are building now is more complex,

and there is a high chance of errors and debugging required. In case the

application we run is still under development, we might need to do some

debugging and check console messages and errors that it generates.

While for a regular web application this can be done by interacting with

the browser with the help of a mouse and keyboard and launching the

development console, in our case, there is no way of actually controlling

the electron environment in an interactive manner. Therefore, if we

want to have the development console launched, we need to specify this

from within the main process by adding the following line: mainWindow.

webContents.openDevTools();

Chapter 4 Smart Soda Dispenser System

99

�The User Interface
Now that we have configured the electron environment properly, we need

to create the user interface. The UI consists of two files: an HTML and a

JavaScript file. To obtain an application that is easy to configure and alter,

inside the HTML file, we only define design elements such as buttons and

labels. Still, we do not populate them with the information. For instance,

we specify that we have a round button for each beverage available, but we

do not specify the number of buttons or the text to be displayed on each

of them. This way, we can think of the HTML as a template that shows the

information defined in the JavaScript file. Therefore, if we want to change

the number or types of beverages, it is enough to do one change in the

app.js file, and this is reflected throughout the application. Similar to the

previous application, we use Vue.js, so it is easier to create a dynamic

UI. This is why the two files are tightly coupled, and we need to create

them simultaneously.

For this application, we display a different button for each beverage

type available, a Pour button which starts pouring the drink and a Stop

button.

�Display Beverages

In this context, we first create the following index.html file, which displays

a button for each beverage type (Listing 4-1).

Listing 4-1.  The index.html file

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Soda</title>

 </head>

Chapter 4 Smart Soda Dispenser System

100

 <body>

 <div id="app">

 <div v-for="beverage of beverages">

 <�button v-bind:style="{color: beverage.wcolor,

background: beverage.bgcolor}">{{beverage.name}}

</button>

 </div>

 </div>

 <script src="app.js"></script>

 </body>

</html>

Now let us take a closer look at the tags used.

First, we created one <div> tag that contains all the information

displayed and which is linked to the JavaScript application:

<div id="app">.

Further on, for each beverage we display, we create a different <div>

element. To programmatically populate the interface, we included the

v-for directive in the <div> tag. What this directive does is to iterate in a

given array (beverages in our case), and for each element, a different DOM

object is created.

The beverages array is defined inside the app.js file, which looks like in

Listing 4-2.

Listing 4-2.  The app.js file

const Vue = require ('vue/dist/vue.common.js');

var app = new Vue ({

 el: '#app',

 data: {

 beverages: [

 {name: 'soda', bgcolor: 'darkred', wcolor: 'white'},

 {name:'orange juice', bgcolor: 'orange', wcolor: 'white'},

Chapter 4 Smart Soda Dispenser System

101

 �{name: 'water', bgcolor: 'cornflowerblue', wcolor:

'white'}],

 selection: null

 },

 created() {

 this.selection = this.beverages[0];

 }

});

In the app.js file, we first import the vue module, and we create a new

vue application that is linked to the app element. While in the previous

chapter, we imported the vue module using a link referenced in the

HTML file, now we install the library on the device and import it using the

require() function. This is similar to the installation of the onoff library in

the previous chapter.

We then define the beverages array inside the data section. This

means the variable that is linked to the vue application can be accessed

from the HTML file, also linked to this application.

In the HTML file, we can use the properties of each element to

customize the button. To define style elements that are based on variables,

we had to use the v-bind directive.

�Select Beverage

Once we have the beverage buttons defined, we can store the selected

drink (Listing 4-3). To achieve this, we have to add a new directive to the

buttons: v-on:click="select(beverage)", which calls the select()

function each time the button is pressed. As all the buttons call the same

function, we add the beverage as a parameter.

Chapter 4 Smart Soda Dispenser System

102

Listing 4-3.  Click event on the button

<button class="juice-type" v-on:click= "select(beverage)"

v-bind:style="{color: beverage.wcolor, background: beverage.

bgcolor}">{{beverage.name}}</button>

As usual, the function needs to be declared inside the app.js file.

Similarly, to the data field, we add a methods field, where we define all

functions that can be called from the HTML file, similar to Listing 4-4.

Listing 4-4.  The methods defined in the app.js file

methods: {

 select (element) {

 this.selection = element;

 }

}

Notice that the defined function stores the selected element in a

variable. The selection variable needs to be added to the data field

(Listing 4-5).

Listing 4-5.  The data field

data: {

 beverages: [

 {name: 'soda', bgcolor: 'darkred', wcolor: 'white'},

 {name: 'juice', bgcolor: 'orange', wcolor: 'white'},

 �{name: 'water', bgcolor: 'cornflowerblue', wcolor:

'white'}],

 selection: null

 }

Chapter 4 Smart Soda Dispenser System

103

So far, we can select a beverage, but as selection is null at first, to

obtain a proper behavior, we need to assign it a value once the application

starts. You might be familiar with this event from the previous chapter,

where we started downloading information about the weather once

the application was created. In a similar manner, we add the created()

function to the vue application, where we assign a value to the selection

variable. We had to make sure that selection was previously defined in

data, as setting any new property that is not defined in data will not be

taken into consideration by vue (Listing 4-6).

Listing 4-6.  Initial selection

created() {

 this.selection = this.beverages[0];

 }

Caution T o access variables declared in the data section, you
need to use the this.variable format.

�Pour Drink

The next step, after selecting the beverage, is to present the Pour and Stop

buttons to the user (Listing 4-7).

Listing 4-7.  Pour and Stop buttons defined in the index.html file

<button v-show="!pouring" v-on:click="pour(true)"> Pour

{{selection.name}} </button>

<button v-show="pouring" v-on:click="pour(false)"> Stop

</button>

Chapter 4 Smart Soda Dispenser System

104

For both buttons, we call the pour() function, where depending on the

parameter, we specify if we should start pouring the beverage or stop the

process. However, the trick here is that both buttons should not be visible

at once. This is why we included the v-show directive, which depends on

the pouring variable. This variable is set to true when Pour is pressed and

set to false when we press the other button. Similarly, we display a short

text when a beverage is pouring: <label v-show="pouring">Pouring

{{selection.name}}</label>.

In the JavaScript file, we now define the newly used variable

pouring, which is false at first. In the methods section, we declare the

pour()function, where pouring changes its value (Listing 4-8).

Listing 4-8.  The app.js file

const Vue = require ('vue/dist/vue.common.js');

var app = new Vue ({

 el: '#app',

 data: {

 beverages: [

 {name: 'soda', bgcolor: 'darkred', wcolor: 'white'},

 {name:'juice', bgcolor: 'orange', wcolor: 'white'},

 �{name: 'water', bgcolor: 'cornflowerblue', wcolor:

'white'}],

 selection: null,

 pouring: false

 },

 methods: {

 select (element) {

 this.selection = element;

 },

Chapter 4 Smart Soda Dispenser System

105

 pour (action){

 this.pouring = action;

 }

 },

 created() {

 this.selection = this.beverages[0];

 }

});

�Style the User Interface

The final step in building the user interface is to add some style elements

so it looks elegant (Listing 4-9).

Listing 4-9.  The final index.html file

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Welcome</title>

 <style>

 �body {background: black; margin: 0; overflow: hidden;

padding: 0;}

 #app {padding-top: 70px;}

 .select-box {width: 70%; margin: auto; height: 150px;}

 .juice-box {width: 33%; text-align: center; float: left;}

 �.juice-type {border: 0; border-radius: 150px; text-align:

center; width: 140px; line-height: 140px; font-size: 18px;}

 �.pour-bt-box {width: 60%; margin: auto; padding-top:

50px; text-align: center;}

 �.pour-bt-box button {text-align: center; color:white;

border: white 2px solid; padding: 20px 0px; width: 60%;

background: transparent; font-size: 18px; border-radius: 30px;}

Chapter 4 Smart Soda Dispenser System

106

 �.pour-bt-box label {text-align: center; color:yellow;

padding: 20px 0; margin-top: 30px; width: 60%;

background: transparent; font-size: 21px; font-weight:

lighter; display: inline-block;}

 </style>

 </head>

 <body>

 <div id="app">

 <div class="select-box">

 <div class="juice-box" v-for="beverage of beverages">

 �<button class="juice-type"

v-on:click="select(beverage)"

v-bind:style="{color: beverage.wcolor, background:

beverage.bgcolor}">{{beverage.name}}</button>

 </div>

 </div>

 <div class="pour-bt-box">

 �<button v-show="!pouring" v-on:click="pour(true)">Pour

{{selection.name}}</button>

 �<button v-show="pouring" v-on:click="pour(false)">

Stop</button>

 <label v-show="pouring">Pouring {{selection.name}}</label>

 </div>

 </div>

 <script src="app.js"></script>

 </body>

</html>

In the <style> tag we have defined some CSS classes such as app-

background, select-box, juice-type, and so on. Each class has specific

style characteristics that are applied to the corresponding HTML elements,

Chapter 4 Smart Soda Dispenser System

107

resulting in the round and colorful buttons and stylish button borders

(Figure 4-1). The application will be ready to run only after you install the

required modules (next section).

�Install Required Modules
The first line in the app.js file uses an external module, vue. Therefore, the

last step required to run the application successfully is to install it. For this,

we need to launch the Package Manager, identify the Node.js library in the

dropdown list, and select install.

Note I f any of the Node.js libraries you wish to install is not listed
under Package Manager, you can install it by opening the SHELL tab
and entering sudo npm install -g <package_name>.

Figure 4-1.  The resulting user interface

Chapter 4 Smart Soda Dispenser System

108

While we installed the necessary module at a global level on the

device, the application we run inside electron is not able to access it.

Electron works only with modules installed locally, which can be accessed

in the application directory. The obvious solution is to install the modules

locally. However, this means each time we deploy the application on the

device (each time we press Run), the modules have to be reinstalled, which

takes time. To make the process faster, we make a symbolic link in the

application folder to the directory where the global modules are installed.

This needs to be done before the application is executed, when the Run

button is pressed.

Note I n a production environment, the modules are installed at a
local level when the application is built. This will be discussed further
on in the book.

What we aim to do is to run the necessary configuration commands for

installing the libraries and then run the actual application. Therefore, we

build our own makefile to specify these two operations (Listing 4-10).

Listing 4-10.  The makefile

run:

 ln -s /usr/lib/node_modules node_modules

 xinit /usr/bin/electron main.js --no-sandbox -- -nocursor

Inside the makefile we specified the run directive which leads to two

commands being executed: make a link to the global libraries directory,

then launch the application.

Chapter 4 Smart Soda Dispenser System

109

�Building the Dispenser
The next step in building the smart soda dispenser system is to control the

beverage flow. For this, we need to build the physical system that pumps

the drinks, which is controlled through the Raspberry Pi.

�The Schematic
Usually, soda fountains are built using pump systems, which bring the

liquid from the tanks to your cup. In a similar manner, we use smaller

water pumps designed for prototyping purposes. The pumps we use are

designed to work when connected to a 3–5V power source, which might

make you believe that it is enough to connect them to one of the Raspberry

Pi’s pins. However, the pumps draw a lot of current from the device, and

this can lead to malfunctioning of the Pi. Therefore, we connect the pumps

to an external power source, and we control them with the help of relays.

Note A relay is a switch that can be connected to a high-power
source and can be controlled using a small current.

The relays we use are connected to both the Raspberry Pi and the 5V

power source. For this, we recommend using a power source similar to

the Arduino one and connect it using the DC power barrel. The circuit

schematic is depicted in Figure 4-2.

Chapter 4 Smart Soda Dispenser System

110

Tip Y ou can connect the same power source to all the three pumps.

Figure 4-2.  Pump circuit schematic

Chapter 4 Smart Soda Dispenser System

111

�The Application
The application that controls the earlier schematic needs to integrate the

user interface with the hardware. The relays connected to the Raspberry

Pi can be switched on and off by controlling the appropriate digital pins.

Therefore, we use the onoff module to control the soda flow.

Note  Usually, web applications are designed to run in the browser
and, for security reasons, have no access to the peripherals of the
devices that they run on. However, in this case, as we use electron
instead of a regular browser, the framework allows us to access and
control the Raspberry Pi pins.

�Pins Setup

The first step in building the application is to import the onoff library:

const Gpio = require('onoff').Gpio;

As for each beverage we have a different tank, thus a different pump,

we assign the corresponding pin to each element in the beverages array

(Listing 4-11).

Listing 4-11.  Beverages array with the corresponding pin

beverages: [

 �{name: 'soda', bgcolor: 'darkred', wcolor: 'white',

pinNumber: 16},

 �{name:'juice', bgcolor: 'orange', wcolor: 'white',

pinNumber: 20},

 �{name: 'water', bgcolor: 'cornflowerblue', wcolor: 'blue',

pinNumber: 21}]

Chapter 4 Smart Soda Dispenser System

112

Further on, we can initialize the GPIO pins as output and control them

using the writeSync() function. The initialization can be done in the

created() function where we iterate the beverage array (Listing 4-12).

Listing 4-12.  Pins initialization

for (let beverage of this.beverages){

 beverage.pin= new Gpio(beverage.pinNumber, 'out');

}

�Controlling the Relay

The final step in starting and stopping the beverage pumps is to control the

relays connected to the Raspberry Pi. Each time the Pour button is pressed,

the pump should start running, and when Stop is pressed, the pump

should stop. Therefore, we insert the pin control line inside the pour()

function (Listing 4-13).

Listing 4-13.  The pour() function

pour (action){

 this.pouring = action;

 if (action)

 this.selection.pin.writeSync (1);

 else

 this.selection.pin.writeSync (0);

 }

Once the application is deployed on the device, once you install the

necessary modules, you obtain a functioning beverage dispenser.

Note T here might be other ways of controlling the beverage flow
that you can try to implement. In either case, the physical system will
resume to one or multiple pins that you have to control.

Chapter 4 Smart Soda Dispenser System

113

�Installing the Modules
As we already mentioned, to control the pins, we imported the onoff

module. While the module should already be installed at a global level

on the device, it has to be rebuilt to work with the electron environment

(electron-rebuild). This requires us to run an extra command before

running the application (Listing 4-14).

To be able to run this command, we need to install it: sudo npm

install -g --unsafe-perm electron-rebuild.

Finally, when we press the Run button, we obtain a working soda

dispenser system.

Listing 4-14.  The final makefile

run:

 ln -s /usr/lib/node_modules node_modules

 electron-rebuild --module-dir=node_modules/onoff

 xinit /usr/bin/electron main.js --no-sandbox -- -nocursor

�Connecting the System to the Internet
Any IoT system should be, in a way or another, connected to the Internet.

In this beverage dispenser case, connecting it to the Internet is essential as

we need a way of remotely monitoring these systems.

One of the main components of such a system is the beverage tanks,

which need to be refilled regularly at a pace that can ensure that the

containers will not get empty during business hours, but also have fresh

beverages. To optimize the times at which the tanks should be filled, it is

important to monitor the beverage consumption continuously. Also, in

the unexpected situation that a tank gets empty, we should be notified

instantly to take the appropriate actions.

Chapter 4 Smart Soda Dispenser System

114

In this context, we integrate the system with ubidots,5 a web service

specialized in storing data from IoT devices.

�Set Up Ubidots Account
Ubidots is a cloud platform designed for storing and displaying data

coming from IoT devices. It exposes a REST API that enables its users to

interact with the platform from within their applications. In a nutshell, the

applications we develop have to make specific requests, leading to data

being stored on the ubidots platform. Further on, that information can be

displayed in an intuitive manner with the help of graphs and other visual

elements.

What we aim to do by using ubidots is to send data about the beverage

consumption and display the amount of liquid left in each soda tank. The

first step in using the platform is to create an account. The service offers

various plans, depending on the usage purpose. For educational purposes,

you can get a free account that has limitations, both in the graphs that

you can use and in the amount of data that can be stored. For industrial

applications, you need to pay to create an account; but you can try a 30-day

trial account, which is what we do for this application.

To create a new trial account, we have to select the Get Started for Free

button (Figure 4-3) and insert some basic details such as the username

and email.

5�https://ubidots.com

Chapter 4 Smart Soda Dispenser System

https://ubidots.com

115

Once the account is created, a token is generated. This is the

authentication element that needs to be attached to all request messages.

To obtain the token, when logged in, click the profile settings and select API

Credentials (Figure 4-4). The token field will show up, and we can copy it.

Figure 4-3.  Create new ubidots account

Figure 4-4.  Get account token

�Initialize Widget Values
As we obtained all the necessary information, we can move on to building

the request messages to push data to the ubidots platform. To do this, we

need to understand how the information is structured on the platform.

Ubidots uses the following main elements:

•	 Devices – The edge devices that send data to the

platform

•	 Widgets – Graphical elements that display data

Chapter 4 Smart Soda Dispenser System

116

•	 Dashboards – A collection of widgets

•	 Variables – Identifiers for data streams sent to the platform

First, we define the message header, where we have to add the token

and the URL for the request. The last part of the URL (raspberry in our

case) is the name of the device that we plan to send data from, and is

registered in the ubidots platform under this name (Listing 4-15).

Listing 4-15.  Ubidots configuration

const ubidotsHeader = {'X-Auth-Token': 'your_token'};

const ubidotsURL = 'https://industrial.api.ubidots.com/api/

v1.6/devices/raspberrypi';

The next step is to send the initial information about the total liquid

amount stored in the tanks. The tanks that we plan to use for prototyping

purposes have two-liter capacity, so we initialize each one to 2000

milliliters. As we have three different tanks, which results in three different

data sources, we add three variables to the application. We make the initial

requests in the created() function.

The request that adds a new variable value to the application has the

following characteristics:

•	 URL – https://industrial.api.ubidots.com/api/

v1.6/devices/{{source_device}}

•	 Type – POST

•	 Payload – {variable1_name:variable1_value, variable2_

name: variable2_value}

•	 Header: Header containing authentication token

The first step is to generate the payload message, which has to contain

three fields for all three data sources. Further on, we will have to build the

request message and make the actual request to the platform (Listing 4-16).

Chapter 4 Smart Soda Dispenser System

https://industrial.api.ubidots.com/api/v1.6/devices/{{source_device}}
https://industrial.api.ubidots.com/api/v1.6/devices/{{source_device}}

117

Listing 4-16.  The request to ubidots

let payload = {};

 for (let beverage of this.beverages){

 beverage.pin= new Gpio(beverage.pinNumber, 'out');

 payload[beverage.id] = 2000;

 }

try{

let result = await axios.post (ubidotsURL, payload,

{headers:ubidotsHeader});

console.log (result);

}

catch (err){

 console.error (err);

}

�Compute the Liquid Amount
Now that the initial values are set up, we have to compute the amount of

liquid that is consumed from each tank and send that data to the ubidots

platform (Listing 4-17).

Listing 4-17.  The final app.js file

const Gpio = require('onoff').Gpio;

const Vue = require ('vue/dist/vue.common.js');

const axios = require ('axios');

const child_process = require ('child_process');

const fs = require ('fs');

let startDate;

const ubidotsHeader = {'X-Auth-Token': your_token', "Content-

Type": "application/json"};

Chapter 4 Smart Soda Dispenser System

118

const ubidotsURL = 'https://industrial.api.ubidots.com/api/

v1.6/devices/raspberrypi';

var app = new Vue ({

 el: '#app',

 data () {

 return {

 beverages: [

 �{name: 'soda', bgcolor: 'darkred', wcolor: 'white',

pinNumber: 16},

 �{name:'juice', bgcolor: 'orange', wcolor: 'white',

pinNumber: 20},

 �{name: 'water', bgcolor: 'cornflowerblue', wcolor:

'white', pinNumber: 21}],

 selection: null,

 pouring: false

 }

 },

 methods:{

 select(element) {

 this.selection = element;

 },

 async pour(action){

 if (action){

 this.pouring = true;

 this.selection.pin.writeSync (1);

 startDate = Date.now();

 }

 else{

 this.pouring = false;

 this.selection.pin.writeSync (0);

Chapter 4 Smart Soda Dispenser System

119

 let seconds = (Date.now() - startDate)/1000;

 let mililiters = seconds * 10

 let ubidotsVariable = {};

 ubidotsVariable[this.selection.name] = - mililiters;

 try{

 �let result = await axios.post (ubidotsURL,

ubidotsVariable, {headers:ubidotsHeader});

 console.log (result);

 }

 catch (err){

 console.error (err);

 }

 }

 }},

 async created() {

 this.selection = this.beverages[0];

 let payload = {};

 for (let beverage of this.beverages){

 beverage.pin= new Gpio(beverage.pinNumber, 'out');

 payload[beverage.name] = 2000;

 try{

 �let result = await axios.post (ubidotsURL,

payload, {headers:ubidotsHeader});

 console.log (result);

 }

 catch (err){

 console.error (err);

 }

 }

 }

});

Chapter 4 Smart Soda Dispenser System

120

To compute how much beverage is disposed, we have to compute

the period during which the pump is functioning and multiply it by how

much soda runs during that time. For this, we declared startDate, a

global variable that is updated each time the Start button is pressed. Also,

we send the negative value as this needs to be subtracted from the total

capacity.

The final step is to send the computed amount to the ubidots platform,

which is done when the Stop button is pressed.

Caution M ake sure the axios module is installed using the Package
Manager.

�Create the Dashboard
When the first request is made to the ubidots platform, the device and the

variables used in the request are automatically registered. This is why we

first have to start the application and then create the dashboard where we

plan to see the data.

To create a new dashboard, we select Data ➤ Dashboards and hit the

Add a new Dashboard button. Once the dashboard is created, we add

three widgets displaying the soda tanks (Add new widget ➤ Tank). For

each tank, we add the corresponding variable (Figure 4-5).

Chapter 4 Smart Soda Dispenser System

121

The next step is to set the other widget parameters (Figure 4-6) such as

name, range value (from 0 to 2000), and aggregation method (choose Sum

instead of Last Value).

Figure 4-5.  Add variable to widget

Chapter 4 Smart Soda Dispenser System

122

Figure 4-6.  Tank widget properties

Chapter 4 Smart Soda Dispenser System

123

Now, as we turn the pump on and off, the ubidots platform displays the

amount of liquid left in the tank (Figure 4-7).

Tip E ach time you reset the application, the created() function
is called, which will add 2000 milliliters to each tank. We recommend
you set the widget time span based on when the application is
launched. For a real device, it would be a good idea to store the
values between software restarts.

�Summary
In this chapter, we used simple hardware and software elements

to prototype a soda dispenser machine. While such systems seem

complicated and difficult to build, by connecting the Raspberry Pi’s digital

pins to three water pumps, we managed to control the liquid flow from our

application.

Figure 4-7.  Live dashboard

Chapter 4 Smart Soda Dispenser System

124

Note  While the project in this chapter builds a soda fountain, the
IoT principles we discuss can be applied to other devices, such as
soda machines, which sell individual packs of soda.

On the software side, by using HTML and JavaScript technologies, we

have built an intuitive interface that allows the user to select from different

beverages available and control the liquid flow.

The final component of the application, which connects it to the

Internet, consists of integrating the ubidots platform in our system.

Ubidots is a web data visualization platform that stores values coming

from edge devices such as the Raspberry Pi and plots them on graphs. As

the platform can be accessed using a browser, it enables us to monitor the

soda dispenser’s status at any time and help us prevent malfunctions and

undesired events.

Chapter 4 Smart Soda Dispenser System

125© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3_5

CHAPTER 5

Smart Advertising
System
Another area where IoT technologies can make a huge impact is the

advertising industry. By taking advantage of the integrated tracking

solutions available in this field, commercials and advertisements can be

more particular and adapted to the public or even to individuals. We can

already think of devices that enable such advancements: smartwatches

that can suggest fitness products tailored to your habits, or gas stations

that display commercials while you fuel your car. Many search engines and

social media services collect and sell search and personal data of users to

advertisers who are then able to provide a custom advertising experience.

Another concrete example is the Amazon Echo device that monitors users’

preferences and can play personalized commercials.

The modern advertising industry is powered by targeted advertising

(including microtargeting) and personalized marketing techniques.

Because of the increase in the number of mobile devices, traditional forms

of advertising (like newspapers) are quickly replaced by online advertising,

which is far more effective.

Most modern advertising techniques are based on two general steps:

collect historical data and then analyze the data to provide the best future

advertising options. In terms of data collecting, the most successful

approach is web tracking, including saving geolocation information,

126

browser cookies, canvas fingerprinting, mouse tracking, user input logging

(from the keyboard or touchscreen), and so on. In fact, even historically,

web traffic was among the first information that logged user’s movement

online since the advent of the World Wide Web (WWW) in the early 1990s.

Once the data is collected, it is analyzed using modern machine learning

and big data techniques to find past trends and to predict future behavior.

The purpose is double: identify personalized advertising for each user who

is tracked in real time and identify global trends to explain the behavior of

particular groups of people.

With the advent of IoT technologies, marketers have new tools to

understand and influence consumers. Sensors can track people in stores

and understand their shopping patterns, advanced facial recognition

can analyze the satisfaction levels of consumers, real-time personalized

advertising can target individuals to maximize the probability of them

making a purchase, and recommendation systems that aggregate huge

amounts of data can provide accurate predictions of future shopping

needs which consumers might currently not even be aware of.

Note  When building such systems, it is crucial to keep in mind
aspects related to user privacy and GDPR compliance. Such devices
should always inform users about the data they collect and give them
the possibility to opt out of having their preferences monitored.

In this chapter, we leverage IoT technologies to build a simple

advertising system that adapts the content based on the person in front of

the display. The system monitors the surroundings and uses a third-party

service to extract data about the people around. Based on the obtained

information, it displays a specific picture or set of pictures.

Chapter 5 Smart Advertising System

127

�Necessary Components
In order to build the smart advertising system, you will need the following

components:

•	 Raspberry Pi connected to the Internet and to

Wyliodrin STUDIO.

•	 Any display that can be connected via HDMI.

•	 Raspberry Pi camera module (Figure 5-1).

•	 USB camera module.

•	 PIR motion sensor.

Note  We use both the Raspberry Pi and a USB camera module to
take pictures, so it is enough to have one of the two to be able to
build this project.

Most of the APIs you integrate into your project, including the ones we
use in this book, are under continuous development. As such, the way
to use and call these APIs changes over time. We highly recommend
that before you start the project development you check the latest
API documentation. Concerning this chapter, we are aware that
while writing this text the Microsoft’s Azure Cognitive Services API is
undergoing significant changes (switching to v2.0) and therefore the
steps we describe in this chapter might differ from the latest release.
Please check the latest official documentation of the API.

Chapter 5 Smart Advertising System

128

�Gathering Surrounding Information
The system that we are building relies on gathering information about who

is watching the commercials it displays. Therefore, the first step in building

it is to implement the data collection mechanism, which, in this case,

implies taking pictures at regular intervals using the Pi Camera.

Figure 5-1.  Pi Camera module1

1�www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS

Chapter 5 Smart Advertising System

http://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS

129

�Connect the Camera Module
The Raspberry Pi camera module, released by the Raspberry Pi Foundation,

is specially designed to be connected to the Pi so we can easily use the board

to take pictures or film videos. The current version of the camera consists of a

Sony IMX219 8-megapixel sensor and can take high-definition pictures. It is

widely used in various IoT applications, such as home surveillance systems.

Note  For systems requiring taking pictures during the night, we
recommend using the Pi NoIR Camera, which lacks in image quality
but can be used in the dark.

Connecting any of the cameras to the Raspberry Pi is an easy process

as the board has a slot dedicated to this (Figure 5-2).

To connect the camera to the Pi, we simply need to lift the plastic clip,

insert the cable, and push back down the clip. For the camera to work, the

circuits exposed on the ribbon cable need to be in direct contact with the

opposite side of the plastic clip. Figure 5-3 depicts the correct orientation

when connecting the camera to the Pi.

Figure 5-2.  Camera module slot

Chapter 5 Smart Advertising System

130

Caution M ake sure you connect the camera when the Raspberry Pi
is not connected to a power supply. Otherwise, there is a slight risk of
producing a short circuit that can fry the camera or the Pi.

�Enable the Camera
By default, the Raspberry Pi is not set to detect the camera once this

is connected. Therefore, we have to enable the camera option, which

activates the driver that allows us to control the module.

Figure 5-3.  Camera module connected to the Raspberry Pi

Chapter 5 Smart Advertising System

131

To do this, we need to open a SHELL tab inside Wyliodrin STUDIO and

type the command sudo raspi-config (Figure 5-4). From the menu that

shows up, we have to select the fifth option, Interfacing Options, then select

P1 Camera. This shows a dialog asking if we want the camera interface to

be enabled or not. We select Yes and exit the menu. For the changes to take

place, we also need to reboot the device.

�The Code
Once the camera is connected, and the driver is enabled, we can move

forward to writing the code that takes pictures.

The architecture of the application we build in this chapter is similar

to the ones we designed previously. It is a web application that runs on

top of the electron framework. Therefore, we create the folder hierarchy

presented in Figure 5-5. First, we need to create the main.js file, which is

designed to launch the application. Further on, we will create the directory

where the source code for the interface resides. As usual, we call that folder

UI and add the index.html and main.js files there. Finally, we need to

create the makefile so at runtime the node_modules folder is linked to the

project, the onoff library is rebuilt for electron, and the application is run

using xinit.

Figure 5-4.  Configure the Pi Camera

Chapter 5 Smart Advertising System

132

Tip Y ou can clone a previously created project under a different name
so you can keep the structure and the makefile and main.js files.

�The index.html File

For this use case, the HTML file is relatively simple as we just display an

image on the screen (Listing 5-1). For now, for testing purposes, we display

the picture that the camera takes. This is the easiest way to check that the

code runs accordingly and picture files are saved.

In the HTML file, we use the tag that receives the image file

to be displayed in base64 format and adapts it to the width and height

according to the display we use. We decided to load the image file contents

in a variable and then pass it to be displayed on the screen, so the image

is loaded instantly by the interface. In the classic case, when a link to the

image file is specified in the tag, for a large image, the browser might

take some time to completely load it on the screen, risking displaying the

image partially for a short time.

Figure 5-5.  Project hierarchy

Chapter 5 Smart Advertising System

133

Once the Electron framework loads the HTML file, we need to specify

when the image file has changed to reload the resource. This is why we

used the v-bind directive, which allows us to pass the image variable

instead of the actual image.

When a new picture is taken, we change the value of image and the Vue

framework ensures the new image is loaded onto the screen.

Listing 5-1.  The index.html file

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Welcome</title>

 </head>

 <body>

 <div id="app">

 �<img v-bind:src= "'data:image/jpeg;base64,'+image"

height="450" width="760"/>

 </div>

 <script src="app.js"></script>

 </body>

</html>

�The app.js File

Once the camera module was enabled on the Raspberry Pi, we can choose

from several libraries and executables to control it. One of the most used

utilities is the raspistill CLI tool.

The basic usage command to take a picture using raspistill is

raspistill -o <file_name>.

Since the application we develop is built using Node.js, and it is

difficult to find up-to-date modules for controlling the Pi Camera, we run

Chapter 5 Smart Advertising System

134

the raspistill executable from within our application to take pictures.

For this, we first need to import the child_process module.

child_process is a Node.js module that enables the creation of new

processes. This way, we can run executables from our application. In this

case, the executable that we wish to run is raspistill.

There are several functions available for executing a child process. In

our case, we can use the exec() function, which receives the full command

to be executed as a parameter.

After the picture was taken (the child process completes), we read the

new image file and store the result in the image variable. We use the base64

encoding to store the data. To achieve this, we imported the fs-extra

module: const fs = require ('fs-extra');

Note  Base64 is one of the most popular encodings for sending
binary data over text channels.

fs-extra is an external Node.js module that enables the interaction

with the file system. Using this module, developers can create or delete

files and directories and manipulate them. While the Node.js framework

includes the fs module, we decided to use fs-extra because of the

asynchronous functions. As such, we use the await syntax instead of

callbacks, making the code easier to follow.

To install the fs-extra module, we need to open a new SHELL tab and

type the command: sudo npm install -g fs-extra.

Since there is the risk of failure while taking the picture or reading the

resulted file, we use the try-catch block, so the application does not crash

if an error appears.

Chapter 5 Smart Advertising System

135

Note  Both exec() and readFile() are non-blocking functions.
We use the await keyword to ensure the following command is
executed only after the function returns.

For now, there is no external trigger for when the pictures should

be taken; we just aim to obtain a system that periodically checks the

environment. In this case, we start taking pictures once the application is

created. Therefore, we insert the new lines of code in the created() function.

We use the setInterval() function to take a picture every 15 seconds

(Listing 5-2).

Note Y ou can change the time interval between two pictures being
taken, but we suggest you leave at least five seconds between
two consecutive pictures. Otherwise you might increase the
computational burden placed on the camera.

Listing 5-2.  The app.js file

const Vue = require ('vue/dist/vue.common.js');

const child_process = require ('child_process');

const fs = require ('fs-extra');

let index = 0;

var app = new Vue ({

 el: '#app',

 data(){

 return {

 image:"

 };

 },

Chapter 5 Smart Advertising System

136

 created() {

 let takePicture = async ()=>{

 try{

 let command = 'raspistill -n -o /home/pi/image';

 await child_process.exec (command);

 �this.image = await fs.readFile('/home/pi/image', {

encoding: 'base64' });

 }

 catch(err){

 console.error (err);

 }

 setTimeout(takePicture, 15000);

 };

 takePicture ();

 }

});

We declared the imgPath variable to the data field so we can reference

it in the HTML file. Every time the variable changes, vue ensures the new

value is replaced in the HTML file, and the corresponding element is

reloaded. However, this can only work if we store each picture under a

different name, implying a change in the variable’s value. This is why we

also created a global variable that increments its value for each picture.

Note  Before taking a picture, the camera does a five seconds
preview, which shows up on the screen. In order to deactivate this,
add the -n parameter to the command: raspistill -n -o path.

What is left is to run the application and notice the camera taking a

picture every 15 seconds, which is displayed on the screen.

Chapter 5 Smart Advertising System

137

Note T he previous block of code is not efficient as each time a
new picture is taken, a new file is stored on the device. We used this
code for testing purposes, but if you plan to use it in a production
environment, make sure you delete all files that are no longer used.

�Personalize the Content
At this point, we have an application that takes pictures every 15 seconds

using the Raspberry Pi camera module. To obtain the smart advertisement

system we desire, we have to analyze each picture and extract information

such as the age and gender of the people in front of the display.

�Set Up Microsoft Cognitive Services Account
Similarly to the previous chapters, we use a web service to analyze the

pictures. One of the most popular such services is Microsoft's Azure

Cognitive Services. These services rely on machine learning algorithms

developed by Microsoft to solve AI problems related to natural language

processing, decision-making, speech analysis, search engines, and image

and video processing.

Out of the five available service categories from the cognitive services

API, we are interested in the one related to vision. This API enables us to

extract information from pictures so we can identify the characteristics of

the people we are addressing.

To use cognitive services, a paid account is required. However, for

seven days, Microsoft gives you the possibility of using a trial account,

which allows you to test the API without any charge.

To create a new account, we need to access the following link: https://

azure.microsoft.com/en-us/services/cognitive-services/face/ and

hit the Try Face button (Figure 5-6). This opens a three-step menu.

Chapter 5 Smart Advertising System

https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/

138

First, we need to select the login type. For now, we aim to test the API,

so we select the Guest option, which allows us to use the API for seven days

for free (Figure 5-7). The next step requires you to sign in using a Microsoft

or other third-party account.

Figure 5-6.  The Cognitive Services platform

Figure 5-7.  Select account type

Chapter 5 Smart Advertising System

139

Once the sign-in process is completed, you are directed to a page

displaying two authentication keys. Also, the service sends you an email

containing more information about the API documentation and a link to

retrieving your authentication details (Figure 5-8).

The two authentication keys are essential for building the application

as they are the ones granting us access to the vision API. Similarly to the

web services we used before, Microsoft Cognitive Services requires us to

add one of the two keys to the header of the request sent to the service.

This way, the server can identify the account associated with the request

and ensure that we have permission to use the service.

Besides the authentication information, we can also visualize the

endpoint that we should access in order to use the API. Depending on

the account details, a different endpoint can be assigned. This is why it is

important to make sure you use the one associated with your account.

Note I n this chapter we use an older version of the API (v1.0
instead of v2.0). The newer version, which has been released
recently, works in the same manner; it just requires a different
account requesting for more authentication details.

Figure 5-8.  Retrieve account keys

Chapter 5 Smart Advertising System

140

�Process the Picture
Now that we have created a trial account for accessing the vision API, we

can integrate this into our application so the pictures we take are processed.

Tip I nformation on the API is available on Microsoft’s web site.2

The first step in using the API is to define the header of the message

that we send (Listing 5-3). The header contains two important pieces

of information: the authentication key and the type of the payload

being transmitted. Up until now, we have sent only raw data structured

under JSON format to the servers. This is because the information being

transmitted has consisted of numbers and text. In this case, we have to

send the whole picture to the web service. Therefore, the type of packet

being transmitted is octet-stream.

Listing 5-3.  Azure package header

const azureHeader = {'Content-Type': 'application/octet-stream',

 'Ocp-Apim-Subscription-Key': '<your_key>'};

Next, we define the URL that we have to access in order to request the

image to be processed. This URL consists of the endpoint associated with

your account, followed by the path to the specific request, then followed by

specific parameters.

In our case, the path is endpoint + /detect since we aim to recognize

facial characteristics from the picture. For this request, the parameters

define the features that we wish to extract from the image. We can choose

various parameters, such as faceAttributes or recognitionModel.

2�https://docs.microsoft.com/en-us/azure/cognitive-services/face/
APIReference

Chapter 5 Smart Advertising System

https://docs.microsoft.com/en-us/azure/cognitive-services/face/APIReference
https://docs.microsoft.com/en-us/azure/cognitive-services/face/APIReference

141

For our use case, we are interested in extracting faceAttributes, more

specifically, the gender of the people in the picture. In the case of a more

complex application, we can specify multiple attributes from age, gender,

wearing glasses, emotion analysis, and so on.

In our application we add the line const azureURL = 'https://

westcentralus.api.cognitive.microsoft.com/face/v1.0/detect?return

FaceAttributes=gender';

Caution  Remember to replace the endpoint with the one generated
for your account.

In the preceding example, each picture was stored as a different file so

it can be easily displayed in the browser. However, in this case, the images

are taken only to be processed by the cognitive services API. Once a picture

is processed, it can be replaced with another one having the same name.

Therefore, we use the raspistill command with a static parameter as

the file path. The result is that each new picture replaces the previous one,

saving space and ensuring we do not store more pictures than necessary.

The image file is stored in the /home/pi directory under the name img.jpg.

Once the image file is generated, we have to store it in a buffer so we

can send it to the web service (Listing 5-4).

Listing 5-4.  The takePicture() function

 created() {

 let takePicture = async ()=>{

 try{

 let command = 'raspistill -o /home/pi/image';

 await child_process.exec (command);

 �let imageBuffer = await fs.readFile ('/home/pi/

image');

Chapter 5 Smart Advertising System

https://westcentralus.api.cognitive.microsoft.com/face/v1.0/detect?returnFaceAttributes=gender
https://westcentralus.api.cognitive.microsoft.com/face/v1.0/detect?returnFaceAttributes=gender
https://westcentralus.api.cognitive.microsoft.com/face/v1.0/detect?returnFaceAttributes=gender

142

 �let result = await axios.post (azureURL,

imageBuffer, {headers:azureHeader});

 if (result.data.length > 0){

 console.log(result.data[0].faceAttributes.gender);

 }

 setTimeout(takePicture, 15000);

 }

 catch(err){

 console.log (err.response);

 }

 };

 takePicture ();

 }

Finally, once we have the file contents, we can make the request to the

Microsoft service. For this, we use the axios module (const axios =

require ('axios')), as in the previous chapters. We make a POST

request and send the file contents as payload.

The result consists of an array of detected faces. Each face has an id

associated with it and the requested attributes. To keep the application

simple, we pick only the first identified face and extract the gender from

the obtained structure.

�Personalize the Content
The final step in building the smart advertising system is to display content

according to the results from the cognitive services API.

To achieve this, we created a folder called img inside UI. Here we

placed two pictures, one targeting females and another one targeting

males. Based on what we have created so far, we now wish to read one of

the two pictures and display its contents on the screen.

Chapter 5 Smart Advertising System

143

While the index.html file remains the same, inside app.js (Listing 5-5),

we check what the response from the cognitive services is, and based

on that, we read one file or another. We also increased the time between

taking and saving two pictures as we do not want to have images changing

too quickly.

Listing 5-5.  The app.js file

const Vue = require ('vue/dist/vue.common.js');

const child_process = require ('child_process');

const fs = require ('fs-extra');

const axios = require ('axios');

const path = require ('path');

const azureHeader = {'Content-Type': 'application/octet-stream',

 'Ocp-Apim-Subscription-Key': '<your_key>'};

const azureURL = 'https://westcentralus.api.cognitive.

microsoft.com/face/v1.0/detect?returnFaceAttributes=gender';

var app = new Vue ({

 el: '#app',

 data(){

 return {

 image:"

 };

 },

 async created() {

 try{

 �this.image = await fs.readFile (path.join(__dirname,

'img', 'male.png'), {encoding:'base64'});

 }

Chapter 5 Smart Advertising System

144

 catch (err){

 console.log (err);

 }

 let takePicture = async ()=>{

 try{

 let command = 'raspistill -o /home/pi/image';

 await child_process.exec (command);

 �let imageBuffer = await fs.readFile ('/home/pi/

image');

 �let result = await axios.post (azureURL,

imageBuffer, {headers:azureHeader});

 if (result.data.length > 0){

 �if (result.data[0].faceAttributes.gender ===

'female')

 �this.image = await fs.readFile (path.

join(__dirname, 'img', 'female.png'),

{encoding:'base64'});

 else

 �this.image = await fs.readFile (path.

join(__dirname, 'img', 'male.png'),

{encoding:'base64'});

 }

 setTimeout(takePicture, 30000);

 }

 catch(err){

 console.log (err.response);

 }

 };

 takePicture ();

 }

});

Chapter 5 Smart Advertising System

145

Now you can run the application and try out the smart advertising

system you have just built.

Note  Remember to create the makefile associated to the project.

Tip  For more accuracy, you can take into account all recognized
faces and count the dominant gender. You can also consider more
attributes such as age or emotion analysis.

�Remotely Update Source Pictures
So far, we have created a system that can display different pictures

depending on the people in front of the display. To obtain a fully

autonomous, smart advertising system, we need to ensure that

commercials can be updated without directly interacting with the devices.

Therefore, we need to integrate a web service into our application so

pictures are stored remotely and can be quickly updated. In this case, all

working devices download the images from the cloud, and each time a

picture is changed, this automatically reflects in the system.

To achieve this, we use Google Drive to store the pictures. We selected

Google Drive as it is widely used and does not require a new Google

account to be created in order to integrate it into our apps. However,

we need to do some extra setup so we can authenticate ourselves and

integrate the REST API into the application.

�Create a Google Service Account
To authenticate applications with Google Drive, the system uses OAuth

2.0. While for UI applications, this implies a login screen that generates the

authentication credentials once the user logs in successfully, in our case,

Chapter 5 Smart Advertising System

146

we need to authenticate the server application to Google Drive. For this,

we need to create a service account.

To get started, we first need to access the developer console page.3

Here, we need to create a new service account. To do this, we create a new

project (Figure 5-9).

Once it is created, we are redirected to the project dashboard, where

we can create a new service account by clicking the blue button on top

of the screen (Figure 5-10). This launches a new form requesting for

account details, such as name and description. The service account ID is

automatically generated based on the data we insert.

Figure 5-9.  Create a new project

3�https://console.developers.google.com/iam-admin/serviceaccounts

Chapter 5 Smart Advertising System

https://console.developers.google.com/iam-admin/serviceaccounts

147

The next step in creating the service account is to specify the

permissions. Here, we select project ➤ owner as role. The final step is to

create the authentication key. This generates a pair of private-public keys

that we can use to authenticate. After we click the create key button, a

menu appears asking for the type of file to be downloaded (Figure 5-11).

We select JSON and hit Create. This starts the download of a JSON file

that contains information about the service account we have just created.

Besides the private key, the file also contains the project ID, the client ID,

and email, and other details required for authenticating the application

with the Google service.

Figure 5-10.  Create new service account

Chapter 5 Smart Advertising System

148

We need to import this file into the Node.js application so we can start

using the Google Drive API. We also recommend you save the file under a

different name, so it is easier to reference it from the code. We decided to

rename the file credentials.json.

Note  Since the JSON file is loaded inside app.js, we imported it in
the UI folder from the project hierarchy.

�Upload Files on Google Drive
To make the content easy to change, we create three files on Google Drive:

•	 Two image files – The image files that are displayed in

the interface; we delete the files from the application

source and upload them on Google Drive.

•	 A Google spreadsheet – Here we store the categories

based on which we display different images and the

link to the image associated.

Figure 5-11.  Create a new key

Chapter 5 Smart Advertising System

149

First, we need to upload the image files and ensure they can be

accessed by the application. For this, we need to launch the sharing

options and add the service account email that was generated previously

(Figure 5-12).

Tip Y ou can find the service account email in the credentials.JSON
file.

Next, we create the Google spreadsheet file, which has two columns:

category and URL (Table 5-1). In the table, we insert male and female as

category, while for the URL we need to generate the sharing address that

allows the file to be downloaded.

Figure 5-12.  Share image file

Chapter 5 Smart Advertising System

150

Caution T he URL that Google Drive generates when sharing the file
can be used to open a web page that displays it, but not to directly
download the file.

The URL which is used to download the image file is obtained by prefix

concatenating: https://drive.google.com/uc?export=download&id=

with the file ID. To obtain the file ID, we need to open the sharing options

again. The ID is in the share link (Figure 5-13).

�Integrate Google Drive API in the Application
To integrate Google Drive into the application, we first need to read the

spreadsheet to get the categories and the associated URLs. Further on, we

have to download the pictures and display them on the screen. To be more

Table 5-1.  The Google Drive spreadsheet

category url

male https://drive.google.com/uc?export=download&id=...

female https://drive.google.com/uc?export=download&id=...

Figure 5-13.  Get the file ID

Chapter 5 Smart Advertising System

https://drive.google.com/uc?export=download&id=
https://drive.google.com/uc?export=download&id=
https://drive.google.com/uc?export=download&id=

151

efficient and reduce the API calls, we can download all the pictures at a

specific time interval.

Tip I n real-world situations, updates are usually made during
the night, or at a moment when the system is not in heavy use.
In our case, for testing purposes, we re-download the pictures every
minute.

The interaction with the Google Drive API can be done via simple

REST calls. However, the authentication process is complex and requires

multiple operations to be done. In this context, we decided to import

the google-spreadsheet module, which takes care of the authentication

process and also enables reading the spreadsheet’s contents using a simple

function.

The first step in using the module is to install it. For this, we open a

new SHELL tab and type the following command: sudo npm install -g

google-spreadsheet.

Next, we import the module in our application: const

GoogleSpreadsheet = require('google-spreadsheet');

To authenticate with the Google Drive API, we need to store the

contents of the credentials.json file. Since the file contains a JSON

structure, we can import it like any other library: const credentials =

require ('./credentials.json');

To read the spreadsheet, we need to create a GoogleSpreadsheet

object. For this, we have to pass the file’s ID. Similarly to the image files, the

ID can be obtained from the sharing preferences window: var doc = new

GoogleSpreadsheet ('<file id>');

The next step is to authenticate with the Google service and read

the spreadsheet’s contents. This is done in the created() function. By

using useServiceAccountAuth(), we can pass the credentials object as

Chapter 5 Smart Advertising System

152

a parameter and let the library handle all the authentication. Further on,

we call the getRows() function, which receives a callback as the second

parameter. There we can manipulate the rows.

For each spreadsheet row, using axios, we make a request that

downloads the image. The image is stored in base64 encoding in the

pictures structure so we do not have to download the file each time we

want to display it (Listing 5-6).

Listing 5-6.  Download and store picture contents

let response = await axios.get(row.url, {responseType:

'arraybuffer'});

pictures[row.category] = Buffer.from (response.data).toString

('base64');

Each time we aim to change the picture to be displayed, we simply

change the value of the image variable, and this is reflected on the display.

The HTML file remains the same as previously.

Using setTimeout(), we ensure the pictures are downloaded every

minute, so any change we make is not to be reflected instantly in the

interface. All these changes are visible in the following code listing, where

we place the full contents of the app.js file (Listing 5-7).

Listing 5-7.  The application that retrieves pictures from Google Drive

const Vue = require ('vue/dist/vue.common.js');

const child_process = require ('child_process');

const fs = require ('fs-extra');

const axios = require ('axios');

const path = require ('path');

const azureHeader = {'Content-Type': 'application/octet-stream',

 'Ocp-Apim-Subscription-Key': '<your_key>'};

const azureURL = 'https://westcentralus.api.cognitive.

microsoft.com/face/v1.0/detect?returnFaceAttributes=gender';

Chapter 5 Smart Advertising System

153

const credentials = require ('./credentials.json');

var GoogleSpreadsheet = require('google-spreadsheet');

var doc = new GoogleSpreadsheet('<file_id>');

let pictures = {};

let app = new Vue ({

 el: '#app',

 data(){

 return {

 image:"

 };

 },

 async created() {

 doc.useServiceAccountAuth(credentials, ()=>{

 let getPictures = ()=>{

 doc.getRows(1, async (err, rows)=>{

 if (!err){

 for (let row of rows){

 try{

 �let response = await axios.get

(row.url, {responseType:

'arraybuffer'});

 �pictures[row.category] =

Buffer.from (response.data).

toString('base64');

 }

 catch (err){

 console.log (err);

 }

 }

Chapter 5 Smart Advertising System

154

 this.image = pictures.male;

 }

 });

 setInterval (getPictures, 60000);

 };

 getPictures();

 });

 let takePicture = async ()=>{

 try{

 let command = 'raspistill -o /home/pi/image';

 await child_process.exec (command);

 �let imageBuffer = await fs.readFile ('/home/pi/

image');

 �let result = await axios.post (azureURL,

imageBuffer, {headers:azureHeader});

 �if (result.data.length > 0 && result.data[0].

faceAttributes.gender){

 �this.image = pictures[result.data[0].

faceAttributes.gender];

 }

 setTimeout(takePicture, 15000);

 }

 catch(err){

 console.log (err);

 }

 };

 takePicture ();

 }

});

Chapter 5 Smart Advertising System

155

�Connect USB Camera
While the Raspberry Pi camera module is suitable for prototyping IoT

systems like the one presented earlier, its characteristics are limited, and

you will most probably not see it integrated into any production devices.

Many solutions existing on the market rely on different types of cameras

that are connected via USB or other standard connectors. This way, it

is easier to change the camera in case it gets damaged or needs to be

upgraded.

To bring this example closer to a production system, we replace the

Raspberry Pi camera module with a webcam that connects over USB. In

this case, the first step after plugging in the camera is to install a CLI tool

that enables us to control it. To achieve this, we need to open a shell and

type sudo apt-get install fswebcam.

fswebcam is a CLI application available for Debian Linux distributions

(Raspbian is also a Debian distribution) used to capture and manipulate

pictures from various sources. It supports a wide array of operations

such as capturing JPEG or PNG images, set image resolution, flip or crop

pictures, and so on.

For this chapter, we use only the capture images capability, which

translates to executing the following command: fswebcam/home/pi/img.jpg.

This generates a new image file taken with the webcam connected to the

Raspberry Pi.

Note T he picture contains a banner displaying the date and time
it was taken. To generate the file without the banner, add the --no-
banner option to the command: fswebcam --no-banner /home/
pi/img.jpg.

Chapter 5 Smart Advertising System

156

To actually integrate the fswebcam module in the application, we

simply need to replace the command executed using the child_process

module (Listing 5-8).

Listing 5-8.  Take pictures using the webcam

child_process.execSync ('fswebcam --no-banner /home/pi/img.jpg');

�Monitor the Environment
So far, the system we have built takes a picture every 15 seconds and

sends it to the web service to be analyzed. This can result in unnecessary

processing, as there might be moments when there is nobody around the

display. In this context, the final step in building a complete and efficient

solution is to add a motion sensor that tells us if there are people around.

The motion sensor is designed to detect presence in its proximity.

Similarly to radars, these sensors usually emit lights, sounds, or

microwaves into the environment and detect the amount and the time in

which the emitted energy is returned to the source. Based on this, they can

sense if there is anybody or anything around.

For our prototype, we use a PIR sensor,4 which is one of the most

accessible and easy-to-use motion sensors. Its name stands for passive

infrared, which means that it contains a pyroelectric sensor that detects the

level of infrared radiation (IR). To detect motion, the sensor contains two

lenses that are sensitive to the IR. In the idle state, the radiation detected

by both lenses is the same, but when a person or an animal moves around,

as they generate heat, the two lenses detect a different IR value, telling us

that there is somebody in the proximity.

4�https://thepihut.com/products/pir-infrared-motion-sensor-hc-sr501

Chapter 5 Smart Advertising System

https://thepihut.com/products/pir-infrared-motion-sensor-hc-sr501

157

Although it is a complex peripheral, connecting and reading data from

a PIR sensor is a simple operation. The sensor has three legs, one that

needs to be connected to the ground, one that is connected to the 5V pin,

and another one that needs to be connected to a GPIO pin (Figure 5-14).

To tell if there is somebody around or not, we read the value on the

GPIO pin, and if it is equal to one, that means that motion was detected.

Otherwise, the reading returns zero.

Caution T he sensor we use, HC-SR501, is designed to output 3.3V,
the same voltage that the Raspberry Pi works with. When connected
to 5V, other sensors might output 5V, which will fry the Raspberry Pi.
When buying a presence sensor, make sure you read the datasheet,
and the output voltage is 3.3V.

Figure 5-14.  PIR connection schematic

Chapter 5 Smart Advertising System

158

Listing 5-9.  PIR sensor integrated in app.js

const Vue = require ('vue/dist/vue.common.js');

const child_process = require ('child_process');

const fs = require ('fs-extra');

const axios = require ('axios');

const path = require ('path');

const Gpio = require ('onoff').Gpio;

const GoogleSpreadsheet = require('google-spreadsheet');

const azureHeader = {'Content-Type': 'application/octet-stream',

 'Ocp-Apim-Subscription-Key': '<your_key>'};

const azureURL = 'https://westcentralus.api.cognitive.

microsoft.com/face/v1.0/detect?returnFaceAttributes=gender';

const credentials = require ('./credentials.json');

const doc = new GoogleSpreadsheet('<file_id>');

const sensor = new Gpio (17, 'in', 'rising');

let pictures = {};

let app = new Vue ({

 el: '#app',

 data(){

 return {

 image:"

 };

 },

 async created() {

 doc.useServiceAccountAuth(credentials, ()=>{

 let getPictures = ()=>{

 doc.getRows(1, async (err, rows)=>{

 console.log (err);

Chapter 5 Smart Advertising System

159

 if (!err){

 for (let row of rows){

 try{

 �let response = await axios.

get(row.url, {responseType:

'arraybuffer'});

 �pictures[row.category] =

Buffer.from (response.data).

toString('base64');

 }

 catch (err){

 console.log (err);

 }

 }

 this.image = pictures.male;

 }

 });

 setInterval (getPictures, 60000);

 };

 getPictures();

 });

 start = Date.now();

 sensor.watch (async (err, value)=>{

 if (!err && (Date.now()-start)/1000 > 10){

 start = Date.now();

 try{

 let command = 'raspistill -o /home/pi/image';

 await child_process.exec (command);

 �let imageBuffer = await fs.readFile ('/home/pi/

image');

Chapter 5 Smart Advertising System

160

 �let result = await axios.post (azureURL,

imageBuffer, {headers:azureHeader});

 �if (result.data.length > 0 && result.data[0].

faceAttributes.gender){

 �this.image = pictures[result.data[0].

faceAttributes.gender];

 }

 }

 catch(err){

 console.log (err);

 }

 }

 });

 }

});

To be computationally efficient, the system we desire to obtain should

take and process pictures only when there are people present. We also

need to ensure one picture stays on the screen long enough so it is visible.

Thus, we decided not to change the image faster than once per minute

(Listing 5-9).

To achieve this behavior, we first imported the onoff module and

initialized the sensor variable on pin 17. We also specified the pin to act as

input. The third parameter, 'rising', specifies that an interrupt should be

generated each time the value on the GPIO changes from zero to one. In

our case, this happens when the sensor detects movement.

Since the interrupt is registered, once the application is loaded, we can

call the watch() function and pass as parameter the callback function. The

callback function is called each time a rising edge is detected. Inside the

callback function we do the same actions as previously, but only if the time

since the last picture change is longer than one minute. To do this, we declare

the global variable, start, where we store the date when a picture is taken.

Chapter 5 Smart Advertising System

161

Caution M ake sure onoff is installed on the system. You can
check its status and install it with the Package Manager of Wyliodrin
STUDIO.

�Summary
In this chapter, we have built a smart advertising system by connecting a

camera module to the Raspberry Pi.

To analyze the images we captured, we used Microsoft Cognitive

Services, which are suited to extract information about people from

pictures. For other applications, where additional details need to be

extracted, we can use other web services. Considering the computing

capabilities that the Raspberry Pi has, some of the services available can be

installed on the device, so there is no Internet connection required (e.g.,

openALPR5).

We also integrated the Google Drive service so we can remotely update

the content being displayed. To interact with the service, we imported the

google-spreadsheet module. However, you can also follow the instructions6

that Google provides and integrate the service into the application via

plain HTTP requests.

To make the system more efficient and adapted to the environment, we

added a presence sensor, so we take pictures only when there are people

around. This helps reduce processing power consumption, which is very

important for an autonomous system.

5�www.openalpr.com
6�https://developers.google.com/drive/api/v3/about-sdk

Chapter 5 Smart Advertising System

http://www.openalpr.com
https://developers.google.com/drive/api/v3/about-sdk

162

To take the application to the next level and make it work as an actual

smart advertising system, we recommend that you set the content updates

once per day. Also, for a more precise system, we recommend you explore

the cognitive services API and extract more information for the pictures

you take. Also, you should take into account the characteristics of all the

people in the pictures, not only one person.

Chapter 5 Smart Advertising System

163© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3_6

CHAPTER 6

Smart Metering
System Using
an Industrial Server
Sensing and monitoring people, gadgets, and the environment are a key

feature of any IoT system. A large number of sensors deployed in IoT systems

have the task of collecting the appropriate information and then sending it

up the IoT stack where extended storage and processing capabilities exist, as

explained in Chapter 1. As a famous management saying goes, “you cannot

manage what you do not measure.” In the context of IoT system, predictive

maintenance is an emerging technique that uses detailed data collected

about commercial and industrial processes in order to estimate when

breakdowns will occur and maintenance should be performed.

Examples include environment monitoring (e.g., biomonitoring of

chemical compounds in cities, farms, roads, and parks), people monitoring

(e.g., especially vulnerable people such as babies, children, and seniors),

healthcare monitoring (e.g., wearables such as smartwatches), and

industrial monitoring (e.g., status of industrial equipment or electrical

energy consumption levels). In many commercial and industrial IoT

systems, energy monitoring and targeting (M&T) is a crucial task for cost

reduction but also environmental concerns especially given the worries

about the negative effects of global warming. Energy M&T allows us to track

164

energy consumption in real time, identify areas or periods of anomalous

consumption, predict future consumption patterns, and manage overall

consumption (e.g., the modern energy markets which include renewable

energy sources). The ultimate goal of energy M&T is to improve the energy

efficiency of IoT systems.

Also, so far, we have created several simple applications in order to get

used to working with the Raspberry Pi. All the projects we have created so

far are monolithic, which means that the software we wrote consists of one

major component. The user interface, the control system (access of the

pins), and the Internet connection were tightly coupled together. While

this approach has the advantage of speed and efficiency, it also has some

significant disadvantages. If one piece fails (due to a hardware or software

error), the whole system fails and stops running. It is then challenging to

modify one of the parts. Say we want to make a new user interface or use a

different web monitoring system. This becomes increasingly difficult. We

will have to modify all the components to work with the new part. This is

not the desired behavior when it comes to an industrial project.

In this chapter, we aim to build an industrial system that monitors

the power consumption. This complex application consists of multiple

modules that are interconnected via the OPC Unified Architecture (UA).

�Industrial Applications Architecture
Any standard industrial software is built using decoupled components.

Figure 6-1 describes the architecture of such a system. Ideally, each

component is a separate piece of software, running independently. If one

of them fails, it does not bring down the whole system. If a component

has to be replaced, all the others remain untouched; the only code that

is being modified is the targeted component itself. To achieve this, all of

the components need to communicate with each other using a standard

language, usually called interface or protocol.

Chapter 6 Smart Metering System Using an Industrial Server

165

An example of such a language or protocol is the Open Platform

Communication – Unified Architecture (OPC UA). OPC UA allows the

interconnection of several components that need to communicate to

each other and exchange data. The general architecture of an OPC UA

system consists of a server and several clients. The server is used just like

a database with several specific features. Its purpose is to store data and

serve it to the clients that connect to it. Data is organized in a hierarchical

way (similar to the computer’s file system). It has folders that consist of

other subfolders and properties. Figure 6-2 describes an OPC UA Server

example.

Figure 6-1.  Industrial applications architecture

Chapter 6 Smart Metering System Using an Industrial Server

166

The OPC UA client is a piece of software that connects to the server

and can read, write, and get notifications about data changes. Clients may

connect to the server via the network, serial lines, or other data links. For

the example in this chapter, we will use the network for data transmission.

�Necessary Components
The software that we will design and implement is a smart plug power

meter for a smart house. For this, we will use

•	 One Raspberry Pi connected to Wyliodrin STUDIO.

•	 TP-Link HS110 Smart Wi-Fi Plug1.

•	 Raspberry Pi Touch Display or HDMI Display.

1�www.kasasmart.com/us/products/smart-plugs/kasa-smart-plug-energy-
monitoring-hs110

Figure 6-2.  OPC UA architecture

Chapter 6 Smart Metering System Using an Industrial Server

http://www.kasasmart.com/us/products/smart-plugs/kasa-smart-plug-energy-monitoring-hs110
http://www.kasasmart.com/us/products/smart-plugs/kasa-smart-plug-energy-monitoring-hs110

167

Note Y ou may use any other smart power plug. The only
requirement is that it should have some open API that you can use
to control it. Some of the smart power plugs only work with their
specific phone apps and cloud systems.

�The Smart Power Plug Interface
The system’s architecture is illustrated in Figure 6-3. Its main component is

the OPC UA Server, which stores all the system’s data. The system has three

major components: one that interacts with the smart power plug, one that

connects the device to the Internet, and a component that displays the

information to the user.

Note I n this system, the only components that have to be present
are the server and the power plug interface. All the others may be
missing, and the system still works.

The purpose of the smart power plug interface is to control the smart

power plug, switch it on and off, and read the power metrics (power,

current, and voltage).

Chapter 6 Smart Metering System Using an Industrial Server

168

We use a TP-Link HS110 Smart Power Plug. We have chosen this

model as it can be purchased at a reasonable price, and it is easy to find.

Most important, though, the plug may be controlled using a small Python

script.

The next step is to configure the power plug to connect to the local Wi-Fi

network so we can then control and read data from it. The configuration

process can be done in two ways, either by using the Kasa app or by using a

Python application.

Figure 6-3.  Smart plug system architecture

Chapter 6 Smart Metering System Using an Industrial Server

169

�Set Up the HS110 Smart Power Plug Using
the Kasa App
The first step is to set up the power plug. The easiest way is to download

the TP-Link’s Kasa phone app and set it up using your mobile device. The

app is available for iOS and Android from their respective app stores. From

the app, connect the power plugs to your Wi-Fi network following the

instructions provided. The steps should be the following:

	 1.	 The power plug provides a small Wi-Fi access point

that your phone can connect to; connect your phone

to the plug’s Wi-Fi.

	 2.	 Run the Kasa app; it should discover the power plug.

	 3.	 Using the app, provide your Wi-Fi network

credentials to the power plug.

	 4.	 The power plug disconnects your phone from its

Wi-Fi network and connects to the provided Wi-Fi

network.

	 5.	 Write down the power plug’s new IP address

(from the app or your Wi-Fi router); the MAC

address of the power plug should be similar to

50:c7:bf:0b:37:fd.

�Set Up the HS110 Smart Power Plug Using
the Python SDK
Setting up the smart power plug using the app requires you to sign up to

a cloud system. If you do not want to do this, you can set up the HS110

power plug using the Python SDK. For this, you need a computer that has

Python installed and is able to connect to a Wi-Fi network. You can also

use a Raspberry Pi for this.

Chapter 6 Smart Metering System Using an Industrial Server

170

Note  We use the Raspberry Pi to set up the power plug. You can
follow the same steps using a computer.

The first item on the list is to connect to the power plug. For this, insert

the power plug into a power socket, then press and hold the small button

located on the top of the power plug until the LED display next to the Wi-Fi

sign turns orange. This means the power plug starts an access point (AP)

with the SSID TP-Link_Smart Plug_XXXX where XXXX is replaced by the

last digits of the MAC address of the power plug. This is unique to every

power plug and is located on the back of the power plug.

Using Wyliodrin STUDIO’s Network Manager located in the device

menu, connect the Raspberry Pi to the Wi-Fi network of the power plug, as

shown in Figure 6-4. Please note that the power plug’s Wi-Fi network has

no password.

Figure 6-4.  Raspberry Pi Network Manager

Chapter 6 Smart Metering System Using an Industrial Server

171

Caution  Before connecting the Raspberry Pi to the power plug’s
Wi-Fi network, make sure that the Raspberry Pi is connected to a
wired network; otherwise, you lose connection to the Raspberry Pi.

To set up the power plug’s Wi-Fi credentials so that it can connect to

your Wi-Fi network, we use the same Raspberry Pi that runs the system.

First, we need to open the SHELL tab in Wyliodrin STUDIO. In the shell,

we clone the HS110 Python SDK repository using: git clone https://

github.com/softScheck/tplink-smartplug.

Inside the resulting folder, we can find a file titled tplink_smartplug.
py. This file is a command-line utility that sends commands to the power

plug. To use it, we have to run python tplink_smartplug, followed by

several parameters. The most important available parameters are listed in

Table 6-1.

The first parameter that we have to use is -t. This allows us to specify

the IP address of the smart plug. While the power plug is being set up

and the Raspberry Pi is connected to its Wi-Fi network, the IP address is

192.168.0.1.

Table 6-1.  HS110 command-line interface parameters

Parameter Required Description

-t IP_ADDRESS Yes Specify the IP address of the power plug

-c COMMAND No Send a command to the power plug, used for simple

commands, usually queries

--json JSON_

COMMAND

No Send a command in JSON format to the power plug,

used for commands that have a set of parameters,

usually settings

Chapter 6 Smart Metering System Using an Industrial Server

https://github.com/softScheck/tplink-smartplug
https://github.com/softScheck/tplink-smartplug

172

The first command that we run in the shell is a query command to

check if the power plug receives commands: python tplink_smartplug.

py -t 102.168.0.1 -c info.

This should display the JSON message in Listing 6-1.

Listing 6-1.  Details about the power plug in JSON format

Sent: {"system":{"get_sysinfo":{}}}

Received: {"system":{"get_sysinfo":{"err_code":0, "sw_

ver":"1.1.0 Build 160503 Rel.144605", "hw_ver":"1.0",

"type":"IOT.SMARTPLUGSWITCH", "model":"HS110(EU)",

"mac":"50:C7:BF:0B:37:FD", "deviceId":"8006A31AB763DAFF6C620B8

19B8A853A17ACD19C","hwId":"45E29DA8382494D2E82688B52A0B2EB5",

"fwId":"B78BB2C0C8C2A9D31A75E0CD71430A5F", "oemId":"3D341ECE3

02C0642C99E31CE2430544B", "alias":"TP-LINK_Smart Plug_37FD",

"dev_name":"Wi-Fi Smart Plug With Energy Monitoring",

"icon_hash":"", "relay_state":1, "on_time":19576, "active_

mode":"none", "feature":"TIM:ENE", "updating":0, "led_off":0,

"latitude":0, "longitude":0}}}

Now that the command line is able to connect to the power plug, we

can set up the Wi-Fi network. We run the command in Listing 6-2 using the

-j parameter.

Listing 6-2.  Connect the power plug to the Wi-Fi network

python tplink_smartplug.py -t 192.168.0.1 -j '{"netif":{"set_st

ainfo":{"ssid":"SSID","password":"PASSWORD","key_type":3}}}'

Note R eplace SSID and PASSWORD with your wireless network’s
SSID and password.

Chapter 6 Smart Metering System Using an Industrial Server

173

After running the command, you should see a message like the one in

Listing 6-3.

Listing 6-3.  Wi-Fi setup response

Sent: {"netif":{"set_stainfo":{"ssid":"your_ssid",

"password":"your_password","key_type":3}}}

Received: {"netif":{"set_stainfo":{"mac":"51:A8:BF:0B:37:AD","

err_code":0}}}

If err_code is 0, then everything worked fine; the power plug tries to

connect to your wireless network. If the command is successful, the power

plug connects to your Wi-Fi network and disconnects the Raspberry Pi

from the Wi-Fi. Now we can send commands to the power plug via our

Wi-Fi network.

All we have to do now is to find out the power plug’s IP address. For

this, we install the arp-scan software using the following command line:

sudo apt-get install arp-scan.

The tool that we just installed can be used to find out the IP address of

the power plug. First, we have to know the Raspberry Pi’s IP address and

network mask. These are displayed in the Network Manager window. The

Raspberry Pi that we use has two network interfaces, a wired one (eth0)

and a wireless one (wlan0). As we used the Wi-Fi network to set up the

power plug, the Raspberry Pi’s main network connection is the wired one

(eth0). All the information we need is shown in the ETH0 tab. You should

see something similar to Figure 6-5.

Having all the data, we can run the network tool using the following syntax:

sudo arp-scan IP_ADDRESS:NETWORK_MASK. With the settings shown in

Figure 6-5, the command is sudo arp-scan 192.168.1.151:255.255.255.0.

Note Y our network settings might be different than the ones we have
here; please update the command line according to your settings.

Chapter 6 Smart Metering System Using an Industrial Server

174

If the command is successful, you should see something similar to

Listing 6-4.

Listing 6-4.  Network scan results

Starting arp-scan 1.9.5 with 256 hosts (https://github.com/

royhills/arp-scan)

192.168.1.1 10:7b:44:5b:24:0c (Unknown)

192.168.1.121 c8:d3:ff:af:34:2b Hewlett Packard

192.168.1.72 50:c7:bf:0b:37:fd �TP-LINK TECHNOLOGIES

CO.,LTD.

192.168.1.191 18:66:da:05:b7:8c Dell Inc.

192.168.1.84 b8:27:eb:af:65:63 Raspberry Pi Foundation

Figure 6-5.  Raspberry Pi wired network settings

Chapter 6 Smart Metering System Using an Industrial Server

175

192.168.1.161 44:03:2c:ea:70:1d (Unknown)

192.168.1.177 78:4f:43:77:58:db (Unknown)

192.168.1.242 24:5e:be:03:4d:c5 QNAP Systems, Inc.

192.168.1.169 50:c7:bf:0b:38:17 �TP-LINK TECHNOLOGIES

CO.,LTD.

192.168.1.239 14:ab:c5:6f:aa:81 (Unknown)

Note T he list of addresses and devices that you see might be
different.

By examining that list, we can see that we have two power plugs called

TP-LINK TECHNOLOGIES CO.,LTD. To identify the one that we have just set

up, we have to look at its MAC address displayed in the second column.

The IP address that we are looking for is the one corresponding to the

MAC address that is written on the power plug. In our example, the MAC

address is 50:c7:bf:0b:37:fd and the IP address is 192.168.1.72.

Tip T he IP address is leased to the power plug by your wireless
router. In most of the cases, as long as the plug stays connected, this
address does not change. If you want to make sure it never changes,
please set up your DHCP server on the router to always lease the
same IP address to the power plug by associating the MAC address
to the IP address. This process is called assigning a static IP address.

To make sure that everything works fine, let us run the following

command one more time: python tplink_smartplug.py -t

192.168.1.72 -c info.

This should print in the shell all the information about the power plug.

Everything is now in place.

Chapter 6 Smart Metering System Using an Industrial Server

176

�Write the Power Plug Driver
Now that we have set up the HS110 power plug, we can move forward to

building the control interface for it.

After setting up the power plug, you should have written down its IP

address. This should never change.

Now let us write our interface. Using Wyliodrin STUDIO, please make

a new Node.js project. The next step is to add the Python software that

sends and receives commands from the power plug. For this, please go

to https://github.com/softScheck/tplink-smartplug and download

the file named tplink_smartplug.py. Make a folder called driver in your

Wyliodrin STUDIO project and import the downloaded file there. Your

project layout should look like the one in Figure 6-6.

We now use Node.js to run that Python script. As the Python script

was designed to be run by a user from a console and not from another

application, it displays a little too much information on the screen. To

solve this, we have to make a small change. Open the tplink_smartplug.py

file and find the line similar to print "Sent:", cmd.

Comment this line by adding a # sign in front of it. The next line

should be similar, just that instead of Sent it shows Received. Modify

this line so that it writes print "Received: ", decrypt(data[4:]) or

Figure 6-6.  The project structure

Chapter 6 Smart Metering System Using an Industrial Server

https://github.com/softScheck/tplink-smartplug

177

similar depending on the version of the script that you have. After the

modifications are done, these two lines should look like in Listing 6-5.

Listing 6-5.  tplink-smartplug.py lines changed

print "Sent: ", cmd

print decrypt(data[4:])

These changes to the script make it much easier to use from another

program. Also, the modified version of the script writes on the screen only

the response in JSON format. This format is straightforward to understand

and manipulate from any Node.js application.

Now let us write a small Node.js library that is able to control the script.

Create a new file called tplink_smartplug.js. This file’s contents should

look similar to Listing 6-6.

Listing 6-6.  tplink_smartplug.js contents

const util = require('util');

const exec = util.promisify (require('child_process').exec);

async function tplinkSmartplug(deviceIp, command, data = {})

{

 let response = {};

 try

 {

 �let js = await exec('python "' + __dirname + '/tplink_

smartplug.py" -t ' + deviceIp + ' -c ' + command);

 response = JSON.parse(js.stdout);

 }

Chapter 6 Smart Metering System Using an Industrial Server

178

 catch (e)

 {

 �console.error('Error for ' + deviceIp + ', command ' +

command + ', (' + e.message + ')');

 }

 return response;

}

async function readEnergy (deviceIp)

{

 let energy = {};

 let js = await tplinkSmartplug (deviceIp, 'energy');

 �if (js.emeter && js.emeter.get_realtime && js.emeter.get_

realtime.err_code === 0)

 {

 energy = js.emeter.get_realtime;

 }

 return energy;

}

async function on(deviceIp)

{

 return tplinkSmartplug(deviceIp, 'on');

}

async function off(deviceIp)

{

 return tplinkSmartplug(deviceIp, 'off');

}

module.exports.on = on;

module.exports.off = off;

module.exports.readEnergy = readEnergy;

Chapter 6 Smart Metering System Using an Industrial Server

179

Let us take every line and explain it in detail. First, we have to import

the child_process library. This allows us to run commands from Node.

js. We need this library as we have to run the Python script. This library

has been part of Node.js since its beginnings, so its API is with callback

functions. As the new versions of Node.js allow the use of async and await,

we use the util library to adapt the functions from child_process to use

this new way of programming. The function that we need from util is

promisify.

One of the functions that allow us to run a command from Node.js is

exec(). We import that function from child_process and use promisify

to transform it so that it can be used with async and await.

Next, we designed a function named tplinkSmartplug() whose

purpose is to send a command to the smart plug (using the Python script)

and return a Node.js object with the information that is sent back by

the power plug. The function takes two arguments: deviceIP, which is

the IP address of the desired power plug, and command, a string with the

command to be sent. As you can see, we create an empty response object.

This object is replaced by the actual response or, if an error occurs, it

returns empty.

The exec() function receives only one parameter, a string with the

shell command to run. It starts with python followed by the Python script,

-t, and the deviceIp parameter, and after that by -c and the command.

The __dirname variable represents the folder where the current Node.

js script (tplink_smartplug.js) is placed. As this is the same folder as the

Python script to be run, we just add to it ./tplink_smartplug.py.

Chapter 6 Smart Metering System Using an Industrial Server

180

Note T he exec function is enclosed in a try - catch structure.
This is a good idea as the commands that run outside Node.js might
fail for several reasons, and we do not want this to stop our script.

Caution T he quotes around 'python "' + __dirname +
'/tplink_smartplug.py" -t ' are important. If your project
name has a space in it and the quotes are missing, exec() shows
an error.

If exec() is successful, a JSON string should be returned and stored in

the js variable. We can now parse it to transform it into a JavaScript object

and return it. If there is an error, the catch part is executed where an error

is printed, and the empty result is returned.

Next we define three functions:

•	 readEnergy() – Returns an object with the power

consumption data

•	 on() – Switches the power plug on

•	 off() – Switches the power plug off

All that is left to do is to export the functions so they can be used from a

file that is going to import our script.

Now let us test our Node.js power plug script. In the main.js file of your

project, write the lines in Listing 6-7.

Listing 6-7.  Test the power plug control script

let smartpower = require ('./driver/tplink_smartplug.js');

smartpower.on ('192.168.1.72');

Run the project. If the power plug switches on, the script is working

properly. The driver is not yet complete; we will finish it later.

Chapter 6 Smart Metering System Using an Industrial Server

181

�The OPC UA Server
The main component of our system is the OPC UA Server. To build it, we

use a Node.js library called node-opcua. This library provides developers

with the ability to easily write OPC UA Servers and clients. For the server,

the heavy lifting is done by the library: setting up the actual server,

receiving connections from clients, and storing the actual data. The

developer is responsible for the data model, which means describing the

actual data that is stored inside the server.

Using node-opcua, developers have two ways of describing the data

model: using Node.js source code or via a standard XML file. We use the

first option, but instead of us writing the source code, we use Wyliodrin

STUDIO’s visual OPC UA data model editor.

Note T he OPC UA standard describes a standard way of setting up
the data model using XML files. The downside is that this XML way is
more complicated and adds too much overhead to our system.

First, let us add a folder called server to our project. This is where

we store all the files related to the OPC UA. In this folder, we create a file

server.opcuamodel. Please note that you may call the file with any other

name as long as the extension is opcuamodel. Now when you select

the file, Wyliodrin STUDIO shows you a visual interface where you can

design the data model. This interface is presented in Figure 6-7. As you

can see in the figure, the visual language has two blocks: OPC UA Folder

and OPC UA Variable. We described before the OPC UA data structure as

being a hierarchical one. It actually consists of two elements: folders and

variables.

Chapter 6 Smart Metering System Using an Industrial Server

182

Folders are used to group several folders and variables. Variables

are the actual data storage items. Each variable has several parameters, the

most important being: the name, the ID, the data type, and whether or not

it stores historical data. Let us take them one by one.

The name of the variable is what you, the developer or administrator of

the system, see in an OPC UA explorer software. This is a program similar

to the file explorer.

The ID of the variable is what you, as a developer, need to

know when accessing the server. The ID has the following format:

ns=<number>;s=<text>. The first part, ns=<number>, is the part that

represents the namespace (ns). This is always a number. The OPC UA

separates the data into several namespaces. For this project (and for all

the other projects that we build), we use only namespace number 1. The

second part, s=<text>, is the actual ID. It can be any text.

Note T he Wyliodrin STUDIO visual model editor generates for each
variable the following ID: ns=1;s=</path/to/variable>. For
instance, if we have a folder named Sensors that has a subfolder
called Light that contains a variable named diningRoom, the ID is:
ns=1;/Sensors/Light/diningRoom.

Figure 6-7.  Wyliodrin STUDIO visual OPC UA data model editor

Chapter 6 Smart Metering System Using an Industrial Server

183

The data type parameter specifies the data type of the stored variable.

Table 6-2 describes the main data types that the OPC UA standard provides.

Table 6-2.  OPC UA data types

Name Data Type Description

Boolean A value that may be either true or false.

Byte An unsigned number stored on 8 bits (0 to 255).

ByteString An array of bytes.

DataValue A value together with a status and a timestamp.

DateTime Stores the date and time.

Double A floating-point number using the IEEE 754 on 64 bits.

Float A floating-point number using the IEEE 754 on 32 bits.

GUID A global unique ID (same as UUID).

Int16 A number using 16 bits (-32768 to 32767).

Int32 A number using 32 bits (-2147483648 to 2147483647).

Int64 A number using 64 bits (-9223372036854775808 to

9223372036854775807).

LocalizedText A text together with the locale information.

NodeId A value that stores another OPC UA variable ID

(ns=<number>;s=<text> or ns=<number>;id=<number>).

QualifiedName A name together with a namespace name.

SByte A value that stores a signed number using 8 bits (-128 to 127).

String A text.

UInt16 An unsigned number using 16 bits (0 to 65 535).

UInt32 An unsigned number using 32 bits (0 to 4294967295).

(continued)

Chapter 6 Smart Metering System Using an Industrial Server

184

Another important parameter is whether or not to keep historical data.

This instructs the server to keep or not several data points when the value

changes, enabling clients to read the previous values of the variable.

�OPC UA Variables
It is important to say a few words about the OPC UA variables. When

storing such a variable, it is composed of several fields:

•	 Value – The actual value that is stored.

•	 Type – The data type of the value that is stored.

•	 Timestamps – The date and time when the value has

been modified.

•	 History – Optionally keep a list of previous values.

•	 Status code – The status of the value; this is a property

that adds semantic information to the value. Table 6-3

presents some of the possible status codes.

Name Data Type Description

UInt64 An unsigned number using 64 bits (0 and

18446744073709551615).

Variant The value description of another variable.

XmlElement An XML element.

Table 6-2.  (continued)

Chapter 6 Smart Metering System Using an Industrial Server

185

�The OPC UA Server
The first step in building our server is to set up the data model. Open

the server.opcuamodel file, drag an OPC UA Folder block, and name

it SmartPower. Inside, drag another OPC UA Folder block and name it

SmartPlug1. Inside this block, drag an OPC UA Variable block and name it

power. This is the value that indicates whether the power plug is on or off.

Set the data type of this variable to Boolean, then drag another OPC UA

Folder block and name it Energy. This folder has three variables that hold

the power consumption values. The data model should be similar to the

one presented in Figure 6-8.

While you are dragging and dropping blocks, the editor is writing the

Node.js source code for you. If you click the Show Source button, you are

able to see how it looks like. Moreover, the source code is saved in a file

called server.opcuamodel.js placed in the same folder as the model file

(in our case server). You can also open that file to see the code.

Caution Y ou may edit the source code generated for the model, but
please keep in mind that it will be overwritten any time you open and
modify the model using the visual editor.

Table 6-3.  Available OPC UA status codes for values

Status Code Description

Good The value is normal.

Bad The value has an error.

GoodLocalOverride The value has been overwritten.

Uncertain The value is uncertain or unknown.

GoodEdited The value is not the original; it has been modified by the server.

Chapter 6 Smart Metering System Using an Industrial Server

186

Now that we have created the data model, let us create the server. We

make a new file called index.js in the server folder and write in it the file

the code displayed in Listing 6-8.

Listing 6-8.  The index.js file contents

const opcua = require('node-opcua');

function loadSettings (server)

{

 require ('./server.opcuamodel.js')(server);

}

async function run ()

{

 const server = new opcua.OPCUAServer({

 alternateHostname: ['localhost', '192.168.1.151'],

 �port: 4840, // the port of the listening //socket of the

server

 �resourcePath: '/UA/SmartPlugsServer', //this path will

be added to the endpoint //resource name

Figure 6-8.  The OPC UA data model for the smart power plug

Chapter 6 Smart Metering System Using an Industrial Server

187

 buildInfo : {

 productName: 'SmartPlugs Server',

 buildNumber: '7658',

 buildDate: new Date()

 }

 });

 try

 {

 await server.start ();

 loadSettings (server);

 �console.log ('Server started at '+server.endpoints[0].

endpointDescriptions()[0].endpointUrl);

 }

 catch (e)

 {

 console.error ('Server error: '+e.message);

 }

}

run ();

The first step is to load the node-opcua library. This allows us to create

an OPC UA Server and client. The actions that we have to take to start a

server are to set up the server properties and load the data model. As node-

opcua is able to work with await and async, we wrap the code in an async

function, called run(). Our main program just runs this function (the last

line of Listing 6-8).

Chapter 6 Smart Metering System Using an Industrial Server

188

Inside the run() function, we set the server properties and load the

model. First, we create an OPCUAServer object that represents the server.

Among the properties of the object, we have

•	 port – The port number that the server listens on; the

default value for OPC UA is 4840.

•	 alternativeHostname – All the hostnames that can be

used to connect to the server; we add here localhost

and the Raspberry Pi’s IP address (as we try to connect

from the computer to the Raspberry Pi).

•	 resourcePath – This is the path to the server resources,

the string that follows the hostname.

•	 buildInfo – This is the information about the server;

you can write any values here. In this example, we

have set the name of the server to Smart PowerPlugs,

the date to the current date, and the build to the first

version.

Note T he OPC UA Server uses the Raspberry Pi’s hostname
for accepting connections. As this hostname might change, we
suggest adding localhost as this is always valid. Moreover, if you
have some components connecting to the server from outside the
Raspberry Pi, make sure you add the Raspberry Pi’s IP address and
that this address is not changed.

Now we can start the server using the server.start() function. This

function is an asynchronous one, so we need to use the await keyword.

The last action that we take is to load the model. We have created

a wrapper function called loadModel() that loads the JavaScript file

generated by the OPC UA visual editor. This function requires the server

Chapter 6 Smart Metering System Using an Industrial Server

189

object as an argument and passes it to the JavaScript file containing the

model that is loaded.

Now that we have the server, we run it to make sure that the data

model is correct and the server behaves as expected. For this, we import

the server files in the main project: replace the contents of the main.js file

with the following: require ('./server');

Note A s you can see, we are importing a folder instead of a file.
Node.js imports the index.js file that is placed inside the folder. This
has the same effect as writing require ('./server/index.js');

Now we can run the project. You should see some text popping up in

the console and after some time a line stating Server started at opc.tcp://

raspberrypi:4840/UA/SmartPlugsServer. This means that the server is up

and running.

Note I t takes a few seconds to start the server, do not panic if it
takes a little bit longer.

To see the server data model, we need to use an OPC UA explorer.

There are two options available: opcua-commander, a text mode explorer

that we are able to run from the Raspberry Pi, and ProSys OPC UA Client

that runs on your computer and has a graphical user interface. We will try

both of them.

�OPC UA Commander
The opcua-commander software runs on the Raspberry Pi. To install it, we

go to the Package Manager in the board menu, select Node.js, and install

the opcua-commander library.

Chapter 6 Smart Metering System Using an Industrial Server

190

Note I t takes a few minutes to install opcua-commander.

Once the library is installed, we are able to use it from the shell.

We select the SHELL tab in Wyliodrin STUDIO, press any key to see

the prompt, and run the command: opcua-commander -e opc.tcp://

raspberrypi:4840/UA/SmartPlugsServer.

Note T he -e parameter for opcua-commander defines the
endpoint for the server to connect to. Please use the same address
that was printed by the server in the console.

After connecting, opcua-commander displays a text user interface with

the server data. The interface is similar to the one presented in Figure 6-9.

On the left side, we can see the data hierarchy. This should display three

main folders: Objects, Types, and Views. If we select Objects and press Enter

or Right Arrow, we can open it, and we should see two subfolders: Server

and 1:SmartPower.

Note T he 1: in front of the folder and variables names is due to the
fact that these objects are part of namespace number 1.

Chapter 6 Smart Metering System Using an Industrial Server

191

�ProSys OPC UA Client
Another tool that we can use to explore the OPC UA Server is ProSys OPC

UA Client.2 This tool is easier to use than opcua-commander but requires to

be run on a computer. Please download and start ProSys OPC UA Client.

At the top of the window, there is an address bar. We fill the address with

the endpoint of the OPC UA Server. Please make sure to replace raspberry

with the IP address of the Raspberry Pi.

2�https://downloads.prosysopc.com/opc-ua-client-downloads.php

Figure 6-9.  OPC UA Commander

Chapter 6 Smart Metering System Using an Industrial Server

https://downloads.prosysopc.com/opc-ua-client-downloads.php

192

Tip T he IP address of the Raspberry Pi can be found using the
Network Manager.

If we click the right arrow next to the address bar, after a few seconds, a

small popup appears asking about the connection setup. We can select the

value None for both Security Mode and Security Policy. After a few seconds,

you should see something similar to Figure 6-10.

The left panel of ProSys OPC UA Client displays the server data

hierarchy. You should see the folders and variables from the model. If you

select any value, you see its properties in the Attributes and References tab.

The main property is value, showing the actual value.

Figure 6-10.  The ProSys OPC UA Client connected to the server

Chapter 6 Smart Metering System Using an Industrial Server

193

�The Smart Power Plug Driver
The following step in this project is to connect the smart power plug to the

OPC UA Server. To do this, we get back to our power plug interface that is

stored in the driver folder. The steps that we need to take are the following:

connect to the OPC UA Server, request the power consumption values

from the power plug to monitor the power value, and turn the power plug

on and off depending on the value.

We first need to create a new file called index.js inside the driver

folder. There, we write the lines of code in Listing 6-9.

Listing 6-9.  Index.js contents

const opcua = require("node-opcua")

const client = opcua.OPCUAClient.create();

async function run ()

{

 try

 {

 �await client.connect ('opc.tcp://localhost:4840/UA/

SmartPlugsServer');

 const session = await client.createSession();

 console.log ('SmartPlug connected to Server');

 �const subscription= opcua.ClientSubscription.

create(session,{

 requestedPublishingInterval: 1000,

 requestedLifetimeCount: 10,

 requestedMaxKeepAliveCount: 2,

 maxNotificationsPerPublish: 10,

 publishingEnabled: true,

 priority: 10

 });

Chapter 6 Smart Metering System Using an Industrial Server

194

 subscription.on("started", ()=>{

 console.log ('SmartPlug subscribed to server');

 });

 }

 catch (e)

 {

 console.error ('OPC UA error '+e.message);

 }

}

run ();

First, we import the node-opcua library and create an OPCUAClient

object. This object allows us to connect to the OPC UA Server. As the

library enables the use of async and await, we wrap the whole file in an

async function called run(). Now that we have an OPC UA client, let us

connect to the server. As the server and the client run on the Raspberry Pi,

we can use the endpoint that the server prints out when it starts.

Note  For the endpoint, you can use either the hostname or localhost.

If the connection is successful, we have to set up a session. Each

connection can have multiple sessions. For this example, we need only

one. The session is created using createSession().

�Write the Energy Values
After we create a session, we can read and write OPC UA Server variables.

We use this to write the energy values read from the power plug. For this,

we use the readEnergy() function that we have created for the power plug

interface. For this, we have to import the power plug library, so we place

the lines in Listing 6-10 after the node-opcua import.

Chapter 6 Smart Metering System Using an Industrial Server

195

Listing 6-10.  Import the power plug interface

const smart = require ('./tplink_smartplug.js');

const DEVICE_IP = '192.168.1.72';

The smart variable represents the power plug interface and the

DEVICE_IP is the IP address of the power plug.

Note T he IP address of you power plug might be different.

We set up a timer that reads the energy values from the power plug

every 500ms and writes them to the OPC UA Server. At the bottom of the

run() function, we add the lines in Listing 6-11.

Listing 6-11.  Write OPC UA energy values

setInterval (async () => {

 let energy = await smart.readEnergy (DEVICE_IP);

 if (energy.err_code === 0)

 {

 try

 {

 �await session.writeSingleNode ('ns=1;s=/

SmartPower/SmartPlug1/Energy/current', new

opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.current)

 }));

Chapter 6 Smart Metering System Using an Industrial Server

196

 �await session.writeSingleNode ('ns=1;s=/

SmartPower/SmartPlug1/Energy/voltage', new

opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.voltage)

 }));

 �await session.writeSingleNode ('ns=1;s=/

SmartPower/SmartPlug1/Energy/power', new

opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.power)

 }));

 }

 catch (e)

 {

 �console.error ('OPC UA server write error

'+e.message);

 }

 }

 }, 500);

Every 500ms, the driver reads the energy values from the power plug

using the readEnergy() function. If the read is successful, the returned

object has a property called err_code set to 0. We check for that value, and

if it is 0, we write the values to the OPC UA Server. The function that writes

to the server is called writeSingleNode(). This allows us to write one

single value to one node. We also have to take into account what happens

if there is an error. For example, if the power plug disconnects from the

Wi-Fi network, we should report this as Bad values to the OPC UA Server.

To do this, we add an else branch to the error checking (Listing 6-12).

Chapter 6 Smart Metering System Using an Industrial Server

197

Listing 6-12.  Add error checking

setInterval (async () => {

 try

 {

 let energy = await smart.readEnergy (DEVICE_IP);

 if (energy.err_code === 0)

 {

 �await session.writeSingleNode ('ns=1;s=/

SmartPower/SmartPlug1/Energy/current', new

opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.current)

 }));

 �await session.writeSingleNode ('ns=1;s=/

SmartPower/SmartPlug1/Energy/voltage', new

opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.voltage)

 }));

 �await session.writeSingleNode ('ns=1;s=/

SmartPower/SmartPlug1/Energy/power', new

opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.power)

 }));

 }

 else

 {

 let nodes = [

 {

 �nodeId: 'ns=1;s=/SmartPower/SmartPlug1/

Energy/voltage',

Chapter 6 Smart Metering System Using an Industrial Server

198

 attributeId: opcua.AttributeIds.Value,

 value: {

 statusCode: opcua.StatusCodes.Bad

 },

 },

 {

 �nodeId: 'ns=1;s=/SmartPower/SmartPlug1/

Energy/current',

 attributeId: opcua.AttributeIds.Value,

 value: {

 statusCode: opcua.StatusCodes.Bad

 },

 },

 {

 �nodeId: 'ns=1;s=/SmartPower/SmartPlug1/

Energy/power',

 attributeId: opcua.AttributeIds.Value,

 value: {

 statusCode: opcua.StatusCodes.Bad

 },

 }

];

 await session.write (nodes);

 }

 }

 catch (e)

 {

 �console.error ('OPC UA server write error '+e.

message);

 }

 }, 500);

Chapter 6 Smart Metering System Using an Industrial Server

199

In case of an error, we do not want to write an actual value to the

server, but report a Bad status code. The writeSingleNode() function

does not allow this, so we need to use the write() function. This receives a

single parameter that is a list of nodes and values to be written. This is why

we declare an array of objects, each object having the following properties:

•	 nodeId – The ID of the variable

•	 attributeId – The attribute of the node that we want to

write to (in this case it is the value, others might have

been the data type or the browseName)

•	 value – The value with properties that we want to write

In our case, for the value property, we only specify the statusCode.

Tip  We can make an optimization and write all the nodes at once
when there is no error, just like we did in the case of an error.
For this, the code should be modified as in Listing 6-13.

Listing 6-13.  Optimized code

let nodes = [

 {

 nodeId: 'ns=1;s=/SmartPower/SmartPlug1/Energy/voltage',

 attributeId: opcua.AttributeIds.Value,

 value: {

 value: new opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.voltage)

 }),

 sourceTimestamp: new Date ()

 },

 },

Chapter 6 Smart Metering System Using an Industrial Server

200

 {

 nodeId: 'ns=1;s=/SmartPower/SmartPlug1/Energy/current',

 attributeId: opcua.AttributeIds.Value,

 value: {

 value: new opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.current)

 }),

sourceTimestamp: new Date ()

 },

 },

 {

 nodeId: 'ns=1;s=/SmartPower/SmartPlug1/Energy/power',

 attributeId: opcua.AttributeIds.Value,

 value: {

 value: new opcua.Variant ({

 dataType: opcua.DataType.Float,

 value: parseFloat (energy.power)

 }),

 sourceTimestamp: new Date ()

 },

 }

];

await session.write (nodes);

Caution  When writing variables, please make sure to add the
sourceTimestamp parameter and set it to the current date. This
marks the time when the variable was changed by the client. If this is
not present, the server sets it to null, and some clients are not able
to display the data.

Chapter 6 Smart Metering System Using an Industrial Server

201

�Switch the Power Plug On and Off
Now let us implement the actual power switching functionality. We have a

variable called SmartPower/PowerPlug1/power in the OPC UA Server. This

is written by another component (most probably the UI) when it desires

to switch the power plug on or off. Thus, we need to monitor the variable’s

changes and send the commands to the power plug. To do this, we have to

create a subscription to the server. We need to add the code in Listing 6-14

after creating the session.

Listing 6-14.  Subscribe to OPC UA Server

const subscription= opcua.ClientSubscription.create(session,{

 requestedPublishingInterval: 1000,

 requestedLifetimeCount: 10,

 requestedMaxKeepAliveCount: 2,

 maxNotificationsPerPublish: 10,

 publishingEnabled: true,

 priority: 10

});

subscription.on("started", ()=>{

 console.log ('SmartPlug subscribed to server');

});

The opcua.ClientSubscription.create() asks the OPC UA Server for

a new subscription with the provided parameters. The function requires

the parameters listed in Table 6-4.

Chapter 6 Smart Metering System Using an Industrial Server

202

The subscription is created only when the started event is emitted.

We are able to use the subscription variable before the event is emitted, but

we get data only after the emitted event. After the subscription is in place,

we can start monitoring variables. We need to monitor the SmartPower/

PowerPlug1/power variable, so we use the code in Listing 6-15.

Table 6-4.  OPC UA client subscription parameters

Parameter Description

requestedPublishingInterval The interval, in milliseconds, at which the server

should publish notifications to the client. Each

client can have several subscriptions with different

intervals. A publish messages can contain several

notifications.

A value of 0 means the server uses the smallest

value that it can use.

For example, a variable change is a notification.

requestedLifetimeCount The subscription expires and is deleted by the server

when there is no notification to be sent to the client

this amount of times.

The value has to be at least three times the

keepAliveCount.

requestedMaxKeepaliveCount If there is no notification to be sent this amount of

times, the server sends a keep-alive notification.

maxNotificationsPerPublish The number of notifications to send per each publish

message, 0 is unlimited.

publishingEnabled Enable or disable the publishing of notifications.

priority The priority of the subscription, a higher number is a

higher priority. Usually this should be left 0.

Chapter 6 Smart Metering System Using an Industrial Server

203

Listing 6-15.  Monitor OPC UA variables

const smartPlug1 = await subscription.monitor({nodeId:'ns=1;

s=/SmartPower/SmartPlug1/power'},

 {

 samplingInterval: 500,

 discardOldest: true,

 queueSize: 1

 },

 opcua.TimestampsToReturn.Both);

smartPlug1.on ('changed', (data) => {

 // console.log (data.value.value);

 if (data.statusCode === opcua.StatusCodes.Good) {

 if (data.value.value === true)

 {

 smart.on (DEVICE_IP);

 }

 else

 {

 smart.off (DEVICE_IP)

 }

 }

});

The monitor function takes several parameters; each of them is

described in Table 6-5.

Chapter 6 Smart Metering System Using an Industrial Server

204

In our example, we instruct the server to read the value every 500ms.

We are interested in the latest value, so we set a queue size of one and ask

the server to discard the oldest value. This was, the server always sends us

a single value, the latest one.

The server does not sample the value and report the changes to

our client. The client emits the changed event. To take action when a

value changes, we need to register a function for the changed event. The

function takes as a parameter the data sent by the server. The properties of

the data are shown in Table 6-6.

Table 6-5.  OPC UA monitor variable parameters

Parameter Description

samplingInterval This represents the period in milliseconds at which the server

reads and checks if the variable has changed. A change means

either the value, the timestamp, or the statusCode.

discardOldest Every time a variable changes, it is added to a queue to be

sent. If the queue is filled before it is sent, some values need to

be discarded. Based on this parameter, the server discards the

oldest or the newest value.

queueSize The size of queue to store the values.

Chapter 6 Smart Metering System Using an Industrial Server

205

All we need to do when the value changes is to check if the status code

is Good and send a command to the power plug depending on the value of

the variable.

�Putting It All Together
Now that we have all the components, let us connect them. In the main.
js file, we need to import the server and the driver. The code should be the

one in Listing 6-16.

Listing 6-16.  Import the server and the driver

// start the OPC/UA server

require ('./server');

// start the power plug driver

require ('./driver');

Table 6-6.  OPC UA value properties

Property Description

value The Variant object that represents the value of the variable

(dataType, value, etc.).

value.value The value.

value.dataType The OPC UA data type of the variable.

statusCode The OPC UA status code (should be opcua.StatusCodes.Good

if the value is the right one).

sourceTimestamp The timestamp of the client that changed the value (can be

null).

serverTimestamp The timestamp of the server when it received the change

from the client.

Chapter 6 Smart Metering System Using an Industrial Server

206

All that is left now is to start the application. The user interface is the

ProSys OPC UA Client Application. Please start it and connect to the OPC

UA Server from the application. Browse to PowerPlug1 and select the

Energy folder. Right-click each of the voltage, current, and power variables

and select Monitor. You should see them in Data View on the right-side

panel. Next to each variable in the Data View, check the Graph box.

Figure 6-11 shows how the display looks like.

To turn the power plug on and off, right-click the power variable from

the SmartPlug1 folder and use Write Value. Select true/false to switch.

Figure 6-11.  OPC UA smart power GUI

Chapter 6 Smart Metering System Using an Industrial Server

207

�Summary
In this chapter, we have implemented a power consumption control

system using industrial standards.

We first configured the TP-Link HS110 Smart Wi-Fi Plug to be

controlled from a simple Python script, and we created an API for turning

it on and off and retrieving consumption parameters. Further on, we

created an OPC UA Server that stores values such as energy consumption

or current voltage.

Finally, we used various OPC UA clients to monitor the data coming

from the power plug and also to control it (turn the plug on/off).

The purpose of this example was to give an overview of how

commercial and industrial systems are built in a modular way, making

them easier to maintain and update.

Chapter 6 Smart Metering System Using an Industrial Server

209© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3_7

CHAPTER 7

Data Storing and
Processing
Many commercial and industrial IoT systems collect large amounts of data.

It is currently expected that IoT devices will generate 80ZB (zettabytes,

1ZB = 1 billion terabytes) over the next decade. In most situations, due to

the high volume and potential complex computational pipeline, real-time

analysis of this data is very difficult, or impossible. As such, efficient and

large-scale data storage capabilities are an essential component in IoT

systems: we store the data and use edge or cloud hardware to process it

over minutes, hours, or even days.

The applications we have built so far are designed to monitor the

environment and take actions according to specific parameters. We

also integrated web services so we can process the data we retrieve

from the environment. However, we did not deal with actual storing of

the information coming from the sensors. Any industrial system has a

component that deals with data storage. As we need to keep large amounts

of data, this is an essential aspect of any IoT application.

In this chapter, we will discuss about how to monitor and process data

read from the smart power plugs. By using the project built in the previous

chapter, we aim to extend it so we can connect several power plugs and

store energy consumption information using MariaDB.1

1�https://mariadb.org

https://mariadb.org

210

�Necessary Components
As this chapter aims to build a prototype of an industrial project, we power

the Raspberry Pi using power over Ethernet (PoE). This requires either a

network switch that is PoE enabled or a PoE injector.

The PoE HAT is a small add-on for the Raspberry Pi 3+ or 4 that is

able to connect a PoE-enabled network switch to the Raspberry Pi. This

means that instead of using a power adapter, we can power the Raspberry

Pi directly from the network cable. The second advantage of using the PoE

HAT is that it has a fan that is cooling down the Raspberry SoC. To connect

the HAT to the Raspberry Pi, you just need to place it on top of the board

(Figure 7-1). You can also solder a pin line to the HAT, so it exposes the

Raspberry Pi’s pins.

The Raspberry Pi’s hard drive is an SD card. While these cards are

fine for prototyping, working with them in industrial environments is

not recommended as they tend to break after some time. While fixing

Figure 7-1.  Raspberry Pi PoE HAT 2

2�https://grobotronics.com/raspberry-pi-power-over-ethernet-poe-hat.
html?sl=en

Chapter 7 Data Storing and Processing

https://grobotronics.com/raspberry-pi-power-over-ethernet-poe-hat.html?sl=en
https://grobotronics.com/raspberry-pi-power-over-ethernet-poe-hat.html?sl=en

211

a broken SD card is usually just a matter of writing the Raspberry Pi SD

card image and, if needed, swapping it with a new one, recovering stored

data is an issue. In this chapter, we collect a fair amount of data on energy

consumption, data that we do not want to lose. This is why we recommend

using an external storage system to store the actual data.

For this chapter, we will need

•	 One Raspberry Pi connected to Wyliodrin STUDIO.

•	 One or more TP-Link HS110 Smart Power Plug.

•	 One Raspberry Pi PoE HAT (optional, requires a

Raspberry Pi 3+ or 4).

•	 A PoE (802.3af) capable network switch or PoE injector

(optional).

•	 External hard drive or SSD drive (optional, a USB 3.0

device is recommended).

Note  You may use any other smart power plug. The only
requirement is that it should have some open API that you can use
to control it. Some of the smart power plugs only work with their
specific phone apps and cloud systems.

�Use MariaDB to Store Data
While storing small amounts of information may be done using files,

when storing large amounts of data, a database system is required. There

are a lot of database systems that you can use to store data; some are

summarized in Table 7-1.

Chapter 7 Data Storing and Processing

212

Table 7-1.  Database systems

Name Storage Type Description

MariaDB Relational Developed by MariaDB Foundation; it is a fully

open source database system licensed under GPL

v2. It is a fork of MySQL developed by the original

MySQL developers.

MySQL Relational Developed by Oracle; it is a partially open source

database system, having a community edition

(free) and professional (paid) editions.

PostgreSQL Relational Developed by PostgreSQL Global Development

Group; it is a fully open source database system

licensed under a proprietary license (compatible

with GPL). The project started at UC Berkeley in

1986.

SQLite Relational A file storage open source database developed by

the SQLite Consortium licensed under LGPL. This

is an embeddable database system.

MongoDB NoSQL, Document A partially open source document database

system built by MongoDB. It is licensed under a

proprietary license.

Redis Key/Value, List, In

Memory

An open source in memory database, licensed

under BSD-3 license, sponsored by Redis Labs,

VMWare, and Pivotal. Data storage is in memory

and may be stored on a drive. It is usually used

for cached data storage.

Chapter 7 Data Storing and Processing

213

�Install MariaDB
We have chosen MariaDB to store the data coming from the smart power

monitoring systems as it is fully open source, is compatible with MySQL

(one of the most popular database systems), has a simple architecture, and

has a large community for support and examples.

Now let us install MariaDB on the Raspberry Pi. Using Wyliodrin

STUDIO, connect to the Raspberry Pi and open a SHELL tab. There is a

MariaDB package in the Raspbian repository, so we run apt to update the

packages database and then install MariaDB (Listing 7-1).

Listing 7-1.  Install MariaDB

sudo apt-get update

sudo apt-get install mariadb-server

To check if MariaDB is properly installed, we run the MariaDB

monitor: sudo mariadb. If there is no error, the MariaDB monitor should

display a text similar to Listing 7-2.

Listing 7-2.  MariaDB install check

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 1440

Server version: 10.3.17-MariaDB-0+deb10u1 Raspbian 10

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and

others.

Type 'help;' or '\h' for help. Type '\c' to clear the current

input statement.

MariaDB [(none)]>

Use the exit command to exit the MariaDB monitor.

Chapter 7 Data Storing and Processing

214

Note T he version displayed by your monitor might be different.

�External Storage Setup
The Raspberry Pi’s primary data storage is the SD card. SD cards are easy

to use but are not fail-safe, so storing large amounts of data on them is not

recommended.

Note T he following step is optional. The system works without it, but
be aware that you can lose the stored data at any time. If you do not
want to install any external hard drive or SSD, skip to the next section.

For the data storage, we need an external USB Hard Drive or SSD. We

recommend a USB 3 device as it is faster. Plug in the USB storage device

and wait for a few seconds, then run the dmesg command in the shell. It

should display something similar to Listing 7-3.

Tip  We recommend using an external SSD instead of a hard drive
as the SSD consumes less power. The Raspberry Pi may not be able
to supply the necessary power for a hard drive.

Listing 7-3.  Attaching a hard drive or SSD over USB

pi@raspberrypi:~$ dmesg

[162930.926074] usb 1-1.1: new high-speed USB device number 3

using xhci_hcd

[162931.056976] usb 1-1.1: New USB device found, idVendor=04e8,

idProduct=6032, bcdDevice= 0.00

Chapter 7 Data Storing and Processing

215

[162931.056992] usb 1-1.1: New USB device strings: Mfr=1,

Product=11, SerialNumber=3

[162931.057005] usb 1-1.1: Product: Samsung G2 Portable

[162931.057017] usb 1-1.1: Manufacturer: JMicron

[162931.057028] usb 1-1.1: SerialNumber: 00000011E0A2A

[162931.059388] usb-storage 1-1.1:1.0: USB Mass Storage device

detected

[162931.059859] scsi host0: usb-storage 1-1.1:1.0

[162932.131493] scsi 0:0:0:0: Direct-Access Samsung G2

Portable PQ: 0 ANSI: 2 CCS

[162932.132442] sd 0:0:0:0: [sda] 625142448 512-byte logical

blocks: (320 GB/298 GiB)

[162932.133128] sd 0:0:0:0: [sda] Write Protect is off

[162932.133143] sd 0:0:0:0: [sda] Mode Sense: 3c 00 00 00

[162932.133823] sd 0:0:0:0: [sda] Write cache: disabled, read

cache: enabled, doesn't support DPO or FUA

[162932.151210] sd 0:0:0:0: Attached scsi generic sg0 type 0

[162932.165427] sda: sda1

[162932.168533] sd 0:0:0:0: [sda] Attached SCSI disk

Using dmesg, we can find out the device file name that has been

mapped to the hard drive. It should look similar to sdX: sdX1 sdX2...

where sdX is the name of the drive and sdX1...sdXn are the names of the

partitions of the drive. In our example, you can see we have the drive name

sda and that it has only one partition: sda1.

Note I f you do not see a line similar to the one in Listing 7-3, there
might not be a partition table on the drive. To create a partition table,
run fdisk and create a DOS partition table. Listing 7-4 shows an
example for a new drive.

Chapter 7 Data Storing and Processing

216

Listing 7-4.  Create a new partition table

pi@raspberrypi:~$ sudo fdisk /dev/sda

Welcome to fdisk (util-linux 2.33.1).

Changes will remain in memory only, until you decide to write

them.

Be careful before using the write command.

Command (m for help): o

Created a new DOS disklabel with disk identifier 0xa756425e.

Command (m for help): w

The partition table has been altered.

Syncing disks.

Tip T he letters in bold are the commands that we introduced.

Now let us start setting up the disk drive. First, we run fdisk and create

the partition (Listing 7-5).

Caution  We assume the whole disk drive is used for storing data
and thus erase all its contents. If you have any other data stored on
the drive, either back it up or set up the disk in a different manner.

Listing 7-5.  Create new partition

pi@raspberrypi:~ $ sudo fdisk /dev/sda

Welcome to fdisk (util-linux 2.33.1).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Chapter 7 Data Storing and Processing

217

Command (m for help): p

Disk /dev/sda: 223.6 GiB, 240057409536 bytes, 468862128 sectors

Disk model: KINGSTON SUV5002

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xa756425e

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-468862127, default 2048):

Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-468862127,

default 468862127):

Created a new partition 1 of type 'Linux' and of size 223.6 GiB.

Command (m for help): p

Disk /dev/sda: 223.6 GiB, 240057409536 bytes, 468862128 sectors

Disk model: KINGSTON SUV5002

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xa756425e

Device Boot Start End Sectors Size Id Type

/dev/sda1 2048 468862127 468860080 223.6G 83 Linux

Command (m for help): w

Chapter 7 Data Storing and Processing

218

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

Note  Values for your drive might be different.

We have used the p command to print the partition table. There are no

partitions on our drive. Next, we need to create a Linux partition for the

whole drive. The command for a new partition is n.

Now we should have one Linux partition for the whole drive. Creating

the partition is not enough; before we can use it, we have to format it so we

can set up a file system. This is done by running the mkfs.ext4 command,

like shown in Listing 7-6.

Listing 7-6.  Formatting the external storage drive

pi@raspberrypi:~ $ sudo mkfs.ext4 /dev/sda1

mke2fs 1.44.5 (15-Dec-2018)

Creating filesystem with 58607510 4k blocks and 14655488 inodes

Filesystem UUID: 6266a2d7-dbbc-441a-9d6d-014e1b7db54d

Superblock backups stored on blocks:

 �32768, 98304, 163840, 229376, 294912, 819200, 884736,

1605632, 2654208,n4096000, 7962624, 11239424, 20480000,

23887872

Allocating group tables: done

Writing inode tables: done

Creating journal (262144 blocks): done

Writing superblocks and filesystem accounting information: done

Chapter 7 Data Storing and Processing

219

Now that we have the drive connected and the partition is formatted,

we have to mount it (Listing 7-7). Mounting is the action of displaying the

partition contents in the file system. The command that we use to achieve

this is mount. First, we have to create an empty folder that is the mount

point. Its content is replaced by the actual drive partition contents. Usually

these folders are in the /mnt directory.

Listing 7-7.  Mount the external drive storage

pi@raspberrypi:~ $ sudo mkdir /mnt/storage

pi@raspberrypi:~ $ sudo mount /dev/sda1 /mnt/storage

pi@raspberrypi:~ $ ls -l /mnt/storage

total 16

drwx------ 2 root root 16384 Nov 4 15:45 lost+found

The first command in Listing 7-7 creates the folder where the

external drive is mounted. The second command actually mounts the

drive (/dev/sda1) to the folder (/mnt/storage). The third command

displays the contents of the mounted drive.

Note A ll Linux partitions have a folder called lost+found; this is
why the newly created partition is not empty.

Once we mounted the device, it remains in this state until we manually

run umount, restart, or shut down the Raspberry Pi.

To make sure the drive gets mounted every time the Raspberry Pi

starts, and we do not have to repeat the previous commands, we can

specify this in the /etc/fstab file. This file describes the drives that need to

be mounted at startup. To achieve this, we have to add an extra line similar

to the one shown in Listing 7-8. To edit the file, we use nano and run the

following command in the SHELL tab: sudo nano /etc/fstab.

Chapter 7 Data Storing and Processing

220

Listing 7-8.  Add the external storage in /etc/fstab

proc /proc proc defaults 0 0

PARTUUID=3778ffa5-01 /boot vfat defaults 0 2

PARTUUID=3778ffa5-02 / ext4 defaults,noatime 0 1

a swapfile is not a swap partition, no line here

use dphys-swapfile swap[on|off] for that

/dev/sda1 /mnt/storage auto defaults 0 0

Note P ress Ctrl+X to exit the nano editor. Make sure you save the
file when asked.

The emphasized line in Listing 7-8 is the line we added. This instructs

the Raspberry Pi’s operating system to mount /dev/sda1 in /mnt/storage

while auto-detecting the file system from the partition (auto) and using the

default mount flags.

Now, let us reboot the Raspberry Pi to verify if this works. When the

Raspberry Pi restarts, run the mount command in the SHELL tab to list

all the mounted drives. If /dev/sda1 appears in the list, the device was

successfully mounted (Listing 7-9).

Listing 7-9.  All the Raspberry Pi mounted drives

pi@raspberrypi:~ $ mount

/dev/mmcblk0p2 on / type ext4 (rw,noatime)

devtmpfs on /dev type devtmpfs (rw,relatime,size=860916k,

nr_inodes=122234,mode=755)

sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)

proc on /proc type proc (rw,relatime)

... (parts of the listing have been deleted as they are not

relevant)

/dev/sda1 on /mnt/storage type ext4 (rw,relatime)

Chapter 7 Data Storing and Processing

221

/dev/mmcblk0p1 on /boot type vfat (rw,relatime,fmask=0022,

dmask=0022,codepage=437,iocharset=ascii,shortname=mixed,errors=

remount-ro)

overlay on

Now that we have an external storage system mounted, we have to

configure MariaDB to store the databases on the storage system. First,

inside /mnt/storage, we create a folder called smartpower. Inside

smartpower, we create a new folder, called database. Listing 7-10 shows

the commands used and the expected result.

Listing 7-10.  Create the external storage folder layout

pi@raspberrypi:~ $ sudo mkdir /mnt/storage/smartpower

pi@raspberrypi:~ $ sudo mkdir /mnt/storage/smartpower/database

pi@raspberrypi:~ $ tree /mnt/storage

/mnt/storage

├── lost+found [error opening dir]
└── smartpower
 └── database

3 directories, 0 files

Tip T he tree command displays the contents of a folder in a tree
structure. It is not installed by default and can be installed using
sudo apt-get install tree. You can also visualize the tree
structure by using the File Manager option in Wyliodrin STUDIO.

We store the database information inside the /mnt/storage/
smartpower/database folder. For this, we need to initialize the folder

with an empty database. MariaDB supports a command that creates an

empty database inside a folder (mysql_install_db). Listing 7-11 shows the

command we run.

Chapter 7 Data Storing and Processing

222

Listing 7-11.  Create an empty MariaDB database

pi@raspberrypi:~ $ sudo mysql_install_db --user=mysql

--datadir=/mnt/storage/smartpower/database

Installing MariaDB/MySQL system tables in '/mnt/storage/

smartpower/database' ...

OK

... (some of the listing has been deleted as it had no relevant

information)

The next step is to configure MariaDB to use the newly created

database folder. MariaDB’s settings are specified in the /etc/mysql/
mariadb.conf.d/50-server.cnf file. Here we mention the directory where

the information needs to be stored. Again, we use nano to edit the file

(Listing 7-12).

Listing 7-12.  MariaDB settings file with the new database directory

(in bold)

pi@raspberrypi:~ $ sudo nano /etc/mysql/mariadb.conf.d/50-

server.cnf

#

These groups are read by MariaDB server.

Use it for options that only the server (but not #clients)

should see

#

See the examples of server my.cnf files in #/usr/share/mysql

this is read by the standalone daemon and embedded #servers

[server]

this is only for the mysqld standalone daemon

[mysqld]

Chapter 7 Data Storing and Processing

223

#

* Basic Settings

#

user = mysql

pid-file = /run/mysqld/mysqld.pid

socket = /run/mysqld/mysqld.sock

#port = 3306

basedir = /usr

#datadir = /var/lib/mysql

datadir = /mnt//storage/smartpower/database

tmpdir = /tmp

lc-messages-dir = /usr/share/mysql

#skip-external-locking

Instead of skip-networking the default is now to #listen only

on localhost which is more compatible #and is not less secure.

bind-address = 127.0.0.1

Now let us restart MariaDB so that it uses the new database path. Run

the sudo service mariadb restart command in the SHELL tab. If there

is no error, everything should be working fine.

You can run sudo mariadb to verify that the new settings work. If this

command is successful and it shows you a MariaDB database prompt, the

new settings have been successfully implemented.

�Set Up the Data Model
We use MariaDB to store power consumption data from several smart

power plugs. Every five seconds, we store the instantaneous voltage,

current, and power. In addition, we store the relay state, which tells us

whether the power plug is on or off.

Chapter 7 Data Storing and Processing

224

Now that we are aware of the data that we need to store, we can

establish how this can be structured. MariaDB is a relational database,

meaning that the data is stored in tables. A row in a table represents one

item. For our example, we have one table for the metrics we collect and

one table for the relay status.

The first item we need to create is the database, which we call

smartpower. For this, we first start the MariaDB monitor using the sudo

mariadb command. Next, we can type commands that allow us to store

and retrieve data. To create a new database, we need to use the CREATE

DATABASE command. To use the database, we need to open it first using

the USE command. After opening a database, MariaDB monitor shows its

name in the prompt (Listing 7-13).

Note I n the MariaDB system, a database is a collection of tables.
Think of a database as a folder and of tables as files.

Listing 7-13.  Create the MariaDB smartpower database

MariaDB [(none)]> CREATE DATABASE smartpower;

Query OK, 1 row affected (0.001 sec)

MariaDB [(none)]> USE smartpower;

Database changed

MariaDB [smartpower]>

We create the metrics table using the CREATE TABLE command.

Listing 7-14 shows the exact command. Our table has six columns

presented in Table 7-2.

Chapter 7 Data Storing and Processing

225

Listing 7-14.  Create the metrics table

MariaDB [smartpower]> CREATE TABLE meters (id INT AUTO_INCREMENT

PRIMARY KEY NOT NULL, timestamp TIMESTAMP NOT NULL, smartplug

VARCHAR(200) NOT NULL, voltage FLOAT, current FLOAT, power FLOAT);

Query OK, 0 rows affected (0.012 sec)

In Listing 7-14, we can notice that we have used some flags next to the

data types. Let us go through each of them to understand their purpose

better. The AUTO_INCREMENT flag for the id field makes MariaDB add a new

unique value to the id field each time a row is inserted. The first time we

insert a row, the value inserted in the id field is 1. The next time we insert

a row, the value is 2. The PRIMARY KEY flag marks the field as an index, so

searching for a specific row using this field is fast. Each table needs one

Table 7-2.  The MariaDB table structure

Name Data Type Description

id INT An ID for each table entry; this is the primary key. Its

purpose is to uniquely identify a table entry or row.

timestamp TIMESTAMP The date and time when the entry or row was inserted

in the table. The TIMESTAMP data type will instruct

MariaDB to automatically fill this field with the current

timestamp when the entry or row is inserted.

smartplug VARCHAR (200) The name of the smart plug to which the newly

inserted values belong to. We use the same table for

storing the values from all the smart plugs. That is why

one of the fields identifies the smart plug.

voltage FLOAT The voltage value.

current FLOAT The current value.

power FLOAT The power value.

Chapter 7 Data Storing and Processing

226

and only one primary key. The NOT NULL flags prevent MariaDB to insert a

row into the table if that field value is NULL.

Note R elational databases can differentiate between a field that
stores a value and a field that has a value missing. For example, in
our case, we have a field that stores the power consumption value. If
for some reason, the smart plug goes offline and we cannot read it, it
does not mean the value does not exist, we just do not know it. If we
were to write 0 into the field, that would be wrong as the power was
not 0W. We can write a NULL value (different from 0), and that marks
that we do not know the value.

To make sure the table was created according to the specified settings,

we can run the DESCRIBE command, which prints all table fields and their

properties (Figure 7-2).

There is one more step that we have to take before having the table in

place. We have a field called smartplug that is of type string and which

stores the name of the smart plug to which the data in that row belongs

to. When we query this table, we ask MariaDB to show us all the values for

one of the smart plugs. The SQL query looks like the one in Listing 7-15.

The query is not very fast as MariaDB has to search all the table rows and

match the value of smartplug. To make it faster, we have to define an index

Figure 7-2.  Display meters table properties

Chapter 7 Data Storing and Processing

227

for the smartplug field, by using the CREATE INDEX command illustrated in

Figure 7-3.

Listing 7-15.  Querying the meter values for the smart plug

SmartPlug1

SELECT * FROM meters WHERE smartplug = 'SmartPlug1';

Defining an index makes searching the table fast every time we have

this field in the WHERE clause.

Tip  When using MariaDB and searching in tables, make sure you
have indexes for every item in the WHERE clause.

Now, let us create a table to store the status of the smart plug.

Similarly to the meters table, we use the CREATE TABLE command. This

table is called onoff, and it has one entry for each smartplug, making the

smartplug field a PRIMARY KEY (Listing 7-16).

Listing 7-16.  Create the onoff table to store the smart plug status

MariaDB [smartpower]> CREATE TABLE onoff (timestamp TIMESTAMP,

smartplug VARCHAR (200) PRIMARY KEY, relay INT NOT NULL);

Query OK, 0 rows affected (0.018 sec)

Having created these two tables, our database is complete. To be able

to access the database from a piece of software, we have to create a user

and a password, but we will discuss these things later.

Figure 7-3.  Create an index for the smartplug field

Chapter 7 Data Storing and Processing

228

�Upgrade to Use Multiple Smart Plugs
To build the project in this chapter, we start from the project built in the

previous chapter and make some modifications to it. We interface several

smart plugs (instead of one), modify the OPC UA model, and access the

MariaDB database and store the data.

We extend the architecture of the previous project by adding a

database module. This module queries the OPC UA Server at a fixed

time interval and stores the data, voltage, current, power, and relay in the

MariaDB database. Figure 7-4 presents the new architecture.

Figure 7-4.  The software architecture

Chapter 7 Data Storing and Processing

229

Another modification is to introduce a list of smart plugs. In the main

folder of the project, we need to add a file called plugs.json. This contains

a list of smart plugs that we want to monitor. For this example, we monitor

two smart plugs, as can be seen in Listing 7-17.

Listing 7-17.  Smart plugs list in plugs.json

[

 {

 "name": "SmartPlug1",

 "ip": "192.168.1.72"

 },

 {

 "name": "SmartPlug2",

 "ip": "192.168.1.169"

 }

]

Caution  You need to set up both smart plugs before you can use
them. You can follow the steps described in Chapter 6 to set up IP
addresses for both power plugs.

�The OPC UA Data Model
For the OPC UA data model, we use a similar model to the one in the

previous chapter. We need to make the following changes:

	 1.	 We defined for each smart plug a folder called

Energy that stores the power (voltage, current, and

power) variables.

Chapter 7 Data Storing and Processing

230

	 2.	 For each smart plug, we defined a folder called

Actions that stores the variable switch. This is a

Boolean variable that is used as a function. This

variable is monitored by the smart plug driver, and

every time it changes, the driver switches the smart

plug on or off, according to the variable’s new value.

	 3.	 Each smart plug has a folder called Sysinfo, where

we declare two variables: a String called alias and

a Boolean called relay.

The initial data model, designed using visual blocks, is shown in

Figure 7-5. The model is good, but it is not enough. This project has to be

able to get data from several smart plugs, each smart plug having the same

data model. The only difference between the plugs is the way the data

model is called. You can see from the way the model looks that right now it

is designed to serve only one smart plug, SmartPlug1.

Figure 7-5.  OPC UA smart plug data model

Chapter 7 Data Storing and Processing

231

A feature that Wyliodrin STUDIO OPC UA Visual model editor provides

is templates. This works similar to an OPC UA Folder; it contains other

subfolders and variables. The difference is that when the server runs, it

creates a new folder for each smart plug based on the template. Figure 7-6

shows the data model created using the template.

Now, let us load the data model into the server. The server source code

is the same as for the project described in the previous chapter, with a

small change when it comes to loading the data model (Listing 7-18).

Listing 7-18.  The OPC UA Server

const opcua = require('node-opcua');

const plugs = require ('../plugs.json');

function smartPlugNames ()

{

 let smartplugs = [];

 for (let plug of plugs) smartplugs.push (plug.name);

Figure 7-6.  OPC UA data model using a template

Chapter 7 Data Storing and Processing

232

 return smartplugs;

}

function loadModel (server)

{

 require ('./settings.opcuamodel.js')(server, {

 smartplugs: smartPlugNames ()

 });

}

async function run ()

{

 const server = new opcua.OPCUAServer({

 �alternateHostname: ['localhost', '192.168.1.3'],

/* add all the addresses for the interfaces that you

would like to listen to*/

 �port: 4840, /* the port of the listening socket of the

server*/

 �resourcePath: '/UA/SmartPlugsServer', /* this path will

be added to the endpoint resource name*/

 buildInfo : {

 productName: 'SmartPlugs Server',

 buildNumber: '1',

 buildDate: new Date()

 }

 });

 try

 {

 await server.start ();

 loadModel (server);

Chapter 7 Data Storing and Processing

233

 �console.log ('Server started at '+server.endpoints[0].

endpointDescriptions()[0].endpointUrl);

 }

 catch (e)

 {

 console.error ('Server error: '+e.message);

 }

}

run ();

Let us run over the changes we made. First, we imported the plugs.

json file that contains the database of smart plugs. It actually contains an

array of objects defining each smart plug’s name and IP address. The first

step is to store the database in the plugs variable by using the require

function.

The next change was made inside the loadModel() function. In the

previously described project, we imported the model giving it the OPC UA

server variable as a parameter. The new model uses templates, so we have

to add another parameter defining how the templates are used.

This parameter expects a JavaScript object that has a property (key) for

each of the models, each key identifying an array of folder names for which

the template is used. If you take a look at Figure 7-5, you can notice that

our template is called smartplugs. The object that we send as the second

parameter to the model has a property called smartplugs that takes the

value returned by the smartPlugNames() function. This function returns

an array of names for the smart plugs computed from the smart plugs

database (plugs.json).

Next, let us take a look at the smartPlugNames() function. It defines an

empty array and then iterates (using for-in) over the smart plugs database

(array of objects containing the name and IP of each smart plug), adding

into the array the name of each smart plug. After the iteration, it returns

the array containing the smart plug names.

Chapter 7 Data Storing and Processing

234

If we start the server, we can see the two smart plugs using the ProSys

OPC UA Client, just as illustrated in Figure 7-7. For each of the smart plugs

in the database (plugs.json), we can see the template applied.

�The New Smart Plug Driver
This component handles the connection between our software and the

smart plugs. It is more or less the same driver like the one in the previous

chapter, just that now it handles several smart plugs.

Note A ll the files that we talk about in this section are stored in the
driver folder of the project.

Figure 7-7.  ProSys OPC UA Client displaying the two smart plugs

Chapter 7 Data Storing and Processing

235

The first file that we have to modify is tplink_smartplug.js. Here, we

add a function that reads the system information. To be able to use the

function from outside the file, we also have to export it. This code is shown

in Listing 7-19.

Listing 7-19.  The readSysinfo() function added to the tplink_
smartplug.js file

async function readSysinfo (deviceIp)

{

 let sysinfo = {};

 let js = await tplinkSmartplug (deviceIp, 'info');

 �if (js.system && js.system.get_sysinfo && js.system.get_

sysinfo.err_code === 0)

 {

 sysinfo = js.system.get_sysinfo;

 }

 return sysinfo;

}

...

module.exports.readSysinfo = readSysinfo;

The body for the readSysinfo() function is very similar to the body for

readEnergy(). The only difference is that we send the info instead of the

energy command. There is also a small difference in how we check if there

is an error (the object returned by the smart plug is different).

Next, we have to modify the index.js file. Here, we have made several

changes to make the source code more generic and adapt it to support

multiple smart plugs.

Writing values to the OPC UA Server has been done in the previous

chapter using the functions provided by the OPC UA library. The source

code is pretty big, and considering that here we have to repeat it for every

smart plug that we control, we decided to define some new functions.

Chapter 7 Data Storing and Processing

236

First, we define a function called writeValues() that allows us to write

values to the OPC UA Server. This function is displayed in Listing 7-20.

It receives two parameters: session, which is the OPC UA session, and

values, which is an array of values to be written. Each item in the array has

the following properties:

•	 nodeId – The ID of the variable to be written to.

•	 dataType – The OPC UA data type of the value to be

written to the variable.

•	 value – The value to be written to the variable.

Listing 7-20.  The writeValues() function that writes values to the

OPC UA Server

function writeValues(session, values) {

 let nodes = [];

 for (let valueData of values) {

 nodes.push({

 nodeId: valueData.nodeId,

 attributeId: opcua.AttributeIds.Value,

 value: {

 value: new opcua.Variant({

 dataType: valueData.dataType,

 value: valueData.value,

 statusCode: opcua.StatusCodes.Good,

 }),

 sourceTimestamp: new Date()

 },

 });

 }

 return session.write(nodes);

}

Chapter 7 Data Storing and Processing

237

The writeValues() function iterates the list of values to be written and

creates the actual list of nodes that are supplied to the OPC UA write()

function. The write() function requires several properties for each variable it

writes to, but most of the properties’ values are the same for all our variables.

All our variables have the status code set to Good, the sourceTimestamp

set to the current timestamp, and the attributeId always set to opcua.

AttributesIds.Value. This is why we set these static properties, and we do

not need to pass these as parameters when calling writeValues().

The next function that we have to define is writeBadValues(). This

takes as parameters the OPC UA session and a list of variable IDs and sets

the status code of these variables to Bad. We use this function when a smart

plug is not available. Listing 7-21 displays the source code.

Listing 7-21.  The writeBadValues() function

function writeBadValues(session, nodeIds) {

 let nodes = [];

 for (let nodeId of nodeIds) {

 nodes.push({

 nodeId,

 attributeId: opcua.AttributeIds.Value,

 value: {

 statusCode: opcua.StatusCodes.Bad,

 },

 sourceTimestamp: new Date()

 });

 }

 return session.write(nodes);

}

This function does not write any actual value to the variables, it just

sets the status code. We use this function when the smart plug that we try

to read the values from is not available or is offline.

Chapter 7 Data Storing and Processing

238

Now, let us get the information from the smart plugs. For this, we

have defined a function called setupDevice(). This function receives as

parameters the OPC UA session, the OPC UA subscription, and the smart

plug information from the plugs.json file. The function’s purpose is to

start monitoring the switch variable so that it can turn the smart plug on

and off, read the power values (voltage, current, and power) and system

information (alias and relay status) from the smart plug, and write them to

the OPC UA Server (Listing 7-22).

Listing 7-22.  Getting data from the smart plug to the OPC UA Server

async function setupDevice(session, subscription, plug) {

 �const smartPlug = await subscription.monitor({ nodeId:

'ns=1;s=/SmartPower/' + plug.name + '/Actions/switch' },

 {

 samplingInterval: 500,

 discardOldest: true,

 queueSize: 1

 },

 opcua.TimestampsToReturn.Both);

 smartPlug.on('changed', (data) => {

 if (data.statusCode === opcua.StatusCodes.Good) {

 if (data.value.value === true) {

 smart.on(plug.ip);

 }

 else {

 smart.off(plug.ip)

 }

 }

 });

Chapter 7 Data Storing and Processing

239

 setInterval(async () => {

 try {

 let energy = await smart.readEnergy(plug.ip);

 if (energy.err_code === 0) {

 let values = [

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Energy/voltage',

 dataType: opcua.DataType.Float,

 value: energy.voltage,

 },

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Energy/current',

 dataType: opcua.DataType.Float,

 value: energy.current

 },

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Energy/power',

 dataType: opcua.DataType.Float,

 value: energy.power

 }

];

 await writeValues(session, values);

 }

 else {

 let nodes = [

 �'ns=1;s=/SmartPower/' + plug.name +

'/Energy/voltage',

 �'ns=1;s=/SmartPower/' + plug.name +

'/Energy/current',

Chapter 7 Data Storing and Processing

240

 �'ns=1;s=/SmartPower/' + plug.name +

'/Energy/power'

];

 await writeBadValues(session, nodes);

 }

 }

 catch (e) {

 �console.error('OPC UA server energy write error ' +

e.message);

 }

 }, 3000);

 setInterval(async () => {

 try {

 let sysinfo = await smart.readSysinfo(plug.ip);

 if (sysinfo.err_code === 0) {

 let values = [

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Sysinfo/alias',

 dataType: opcua.DataType.String,

 value: sysinfo.alias,

 },

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Sysinfo/relay',

 dataType: opcua.DataType.Boolean,

 �value: (sysinfo.relay_state === 1) ?

true : false,

 }

];

Chapter 7 Data Storing and Processing

241

 await writeValues(session, values);

 }

 else {

 let nodes = [

 �'ns=1;s=/SmartPower/' + plug.name +

'/Sysinfo/relay'

];

 await writeBadValues(session, nodes);

 }

 }

 catch (e) {

 �console.error('OPC UA server relay write error ' +

e.message);

 }

 }, 3000);

}

First, the function starts monitoring the switch variable. We set a

sampling rate of 500ms, as we want a small delay between the time the

user changes the value of the switch variable and the smart plug actually

switches the relay. We only need the newest value, so we can discard

the old values and set the queue size to 1. Every time the switch variable

changes, we send the corresponding command to the smart plug.

Note E ach smart plug is represented in the plugs.json file by an
object with two properties: name that is the name of the smart plug
and ip the IP address of the smart plug.

Next, we set a timer that reads the power values from the smart plug

every three seconds and writes them to the OPC UA Server. The code used

for writing the values to the OPC UA Server is more straightforward than

Chapter 7 Data Storing and Processing

242

the one we wrote in the previous chapter. For each variable, we specified

only three parameters: the ID, the data type, and the value. Then, we can

call the writeValues() function that we defined previously. If there is

an error while reading the power values, we call the writeBadValues()

function with the list of the variables for the power values. This sets the

variables’ status code to Bad, and any user that reads them from the OPC

UA Server knows that there was an error.

Using the same timer method, we add another timer that reads the

system information from the smart plug every three seconds and writes

the alias and relay_status variables to the OPC UA Server. In case of an

error, we write only the status code Bad for the relay_state as the alias

name has probably not changed when the smart plug is offline.

Next, we change the run() function that connects to the OPC UA

Server. The connection code stays the same, we have to set up all the smart

plugs. This is done using our previously defined function. Listing 7-23

illustrates the code. We iterate the plugs array and call the setupDevice()

function for every smart plug.

Listing 7-23.  The function that sets up all the smart plugs

async function run() {

 try {

 �await client.connect('opc.tcp://localhost:4840/UA/

SmartPlugsServer');

 const session = await client.createSession();

 console.log('SmartPlug connected to Server');

 �const subscription = opcua.ClientSubscription.

create(session, {

 requestedPublishingInterval: 1000,

 requestedLifetimeCount: 10,

 requestedMaxKeepAliveCount: 2,

 maxNotificationsPerPublish: 10,

Chapter 7 Data Storing and Processing

243

 publishingEnabled: true,

 priority: 10

 });

 subscription.on("started", () => {

 console.log('SmartPlug subscribed to server');

 });

 for (let plug of plugs) {

 setupDevice(session, subscription, plug);

 }

 }

 catch (e) {

 console.error('OPC UA error ' + e.message);

 }

}

All that is left to do is to import the plugs.json file as the global

variable plugs and call the run() function. Listing 7-24 displays the whole

driver file.

Listing 7-24.  The smart plug driver modified to support several

smart plugs

const opcua = require("node-opcua")

const client = opcua.OPCUAClient.create();

const plugs = require('../plugs.json');

const smart = require('./tplink_smartplug.js');

function writeValues(session, values) {

 let nodes = [];

 for (let valueData of values) {

 nodes.push({

 nodeId: valueData.nodeId,

Chapter 7 Data Storing and Processing

244

 attributeId: opcua.AttributeIds.Value,

 value: {

 value: new opcua.Variant({

 dataType: valueData.dataType,

 value: valueData.value,

 statusCode: opcua.StatusCodes.Good,

 }),

 sourceTimestamp: new Date()

 },

 });

 }

 return session.write(nodes);

}

function writeBadValues(session, nodeIds) {

 let nodes = [];

 for (let nodeId of nodeIds) {

 nodes.push({

 nodeId,

 attributeId: opcua.AttributeIds.Value,

 value: {

 statusCode: opcua.StatusCodes.Bad,

 },

 sourceTimestamp: new Date()

 });

 }

 return session.write(nodes);

}

async function setupDevice(session, subscription, plug) {

 const smartPlug = await subscription.monitor({ nodeId:

'ns=1;s=/SmartPower/' + plug.name + '/Actions/switch' },

Chapter 7 Data Storing and Processing

245

 {

 samplingInterval: 500,

 discardOldest: true,

 queueSize: 1

 },

 opcua.TimestampsToReturn.Both);

 smartPlug.on('changed', (data) => {

 if (data.statusCode === opcua.StatusCodes.Good) {

 if (data.value.value === true) {

 smart.on(plug.ip);

 }

 else {

 smart.off(plug.ip)

 }

 }

 });

 setInterval(async () => {

 try {

 let energy = await smart.readEnergy(plug.ip);

 if (energy.err_code === 0) {

 let values = [

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Energy/voltage',

 dataType: opcua.DataType.Float,

 value: energy.voltage,

 },

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Energy/current',

Chapter 7 Data Storing and Processing

246

 dataType: opcua.DataType.Float,

 value: energy.current

 },

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Energy/power',

 dataType: opcua.DataType.Float,

 value: energy.power

 }

];

 await writeValues(session, values);

 }

 else {

 let nodes = [

 �'ns=1;s=/SmartPower/' + plug.name +

'/Energy/voltage',

 �'ns=1;s=/SmartPower/' + plug.name +

'/Energy/current',

 �'ns=1;s=/SmartPower/' + plug.name +

'/Energy/power'

];

 await writeBadValues(session, nodes);

 }

 }

 catch (e) {

 �console.error('OPC UA server energy write error ' +

e.message);

 }

 }, 3000);

Chapter 7 Data Storing and Processing

247

 setInterval(async () => {

 try {

 let sysinfo = await smart.readSysinfo(plug.ip);

 if (sysinfo.err_code === 0) {

 let values = [

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Sysinfo/alias',

 dataType: opcua.DataType.String,

 value: sysinfo.alias,

 },

 {

 �nodeId: 'ns=1;s=/SmartPower/' + plug.

name + '/Sysinfo/relay',

 dataType: opcua.DataType.Boolean,

 �value: (sysinfo.relay_state === 1) ?

true : false,

 }

];

 await writeValues(session, values);

 }

 else {

 let nodes = [

 �'ns=1;s=/SmartPower/' + plug.name +

'/Sysinfo/relay'

];

 await writeBadValues(session, nodes);

 }

 }

Chapter 7 Data Storing and Processing

248

 catch (e) {

 �console.error('OPC UA server relay write error ' +

e.message);

 }

 }, 3000);

}

async function run() {

 try {

 �await client.connect('opc.tcp://localhost:4840/UA/

SmartPlugsServer');

 const session = await client.createSession();

 console.log('SmartPlug connected to Server');

 �const subscription = opcua.ClientSubscription.

create(session, {

 requestedPublishingInterval: 1000,

 requestedLifetimeCount: 10,

 requestedMaxKeepAliveCount: 2,

 maxNotificationsPerPublish: 10,

 publishingEnabled: true,

 priority: 10

 });

 subscription.on("started", () => {

 console.log('SmartPlug subscribed to server');

 });

 for (let plug of plugs) {

 setupDevice(session, subscription, plug);

 }

 }

Chapter 7 Data Storing and Processing

249

 catch (e) {

 console.error('OPC UA error ' + e.message);

 }

}

run();

To verify that the code works, we run the project and read the values

using the ProSys OPC UA Client. We should be able to see the power

values, the alias, and relay status and be able to switch the smart plug on

and off by writing into the Actions/switch variable.

�Store the Information in the Database
The next component of the project is data storage. The purpose of this

component is to store information in the MariaDB database that we have

set at the beginning of the chapter.

MariaDB uses usernames and passwords to authenticate and authorize

access to databases and tables. The first step is to create a username and

password for this component. The user has to have access to writing data

to the meters and onoff tables. Let us run the MariaDB monitor. For

this, we go to the SHELL tab and use the sudo mariadb command. This

opens the MariaDB monitor. Next, we specify the database that we aim to

manipulate (Listing 7-25).

Listing 7-25.  The MariaDB monitor

pi@raspberrypi:~ $ sudo mariadb

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 594

Server version: 10.3.17-MariaDB-0+deb10u1 Raspbian 10

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and

others.

Chapter 7 Data Storing and Processing

250

Type 'help;' or '\h' for help. Type '\c' to clear the current

input statement.

MariaDB [(none)]> USE smartpower;

Database changed

MariaDB [smartpower]>

Next, we need to create a username and password. The CREATE USER

command helps us do this. The user that we want to create is called

smartpowerwrite, and the password is smartpowerwrite.

Note T he password is not really a security feature as MariaDB
is not allowing any connections from outside the Raspberry Pi. As
long as a user has access to the Raspberry Pi, we have access to
MariaDB. The credentials are useful to prevent wrongful access due
to software bugs.

After the user is created, we have to grant it INSERT, UPDATE, and

SELECT rights into the tables of the smartpower database. We use the GRANT

command, as shown in Listing 7-26.

Listing 7-26.  Create a user and grant INSERT, UPDATE, and

SELECT rights

MariaDB [smartpower]> CREATE USER smartpowerwrite IDENTIFIED BY

'smartpowerwrite';

Query OK, 0 rows affected (0.007 sec)

MariaDB [smartpower]> GRANT INSERT,UPDATE,SELECT ON

smartpower.* TO smartpowerwrite;

Query OK, 0 rows affected (0.001 sec)

Chapter 7 Data Storing and Processing

251

Now we are ready to write data into the smartpower database. For this,

inside the project folder, we need to create a new folder called database

and, inside it, a file called index.js. To be able to access MariaDB from

Node.js, we need to install the mariadb library. We use the Package

Manager to do that.

Note I f installing the MariaDB package is not working via the
Package Manager, you can run the following command in the shell:
sudo npm install -g mariadb --unsafe-perm.

The database component works in the following way: it connects to the

OPC UA Server and MariaDB server; at a fixed time interval, five seconds

in our example, it reads the power and relay values for each smart plug

from the OPC UA Server and writes them into the database. If a smart plug

has an error, meaning the value of the status code in the OPC UA Server is

set to Bad, the component writes NULL instead of an actual power value.

When it comes to the relay status, our onoff table stores one entry

for each smart plug. The values of the relay field in the table have the

following meaning:

•	 0 – The smart plug is switched on.

•	 1 – The smart plug is switched off.

•	 2 – The smart plug has an error.

The first step in writing the database component is to import the

libraries. We import the OPC UA library, the MariaDB library, and the plugs.

json file (Listing 7-27). After importing the libraries, we create a MariaDB

connection pool. This is related to MariaDB’s library.

Chapter 7 Data Storing and Processing

252

Listing 7-27.  Set up the connection to MariaDB

const opcua = require('node-opcua')

const client = opcua.OPCUAClient.create();

const plugs = require ('../plugs.json');

const mariadb = require('mariadb');

const pool = mariadb.createPool({host: '127.0.0.1',

user: 'smartpowerwrite', password: 'smartpowerwrite',

connectionLimit: 5});

MariaDB and MySQL were designed to power the Web. The language

that was mostly used at that time for writing web applications was PHP. The

PHP language has a particular way in which it works: each time that a user

loads a PHP page in the browser, the web server executes the PHP script,

captures all its output (mostly print functions writing HTML), and sends it

to the browser. This means that the PHP program is run every time a user

accesses a PHP page, it prints out some HTML and then stops. What this

means for the database connection is that each time a page is loaded, the

PHP library connects to the database, sends the queries, and disconnects.

MariaDB and MySQL are optimized for fast and short time connections.

Our application works differently, though. It is not designed to start

and stop frequently; it is programmed to never stop. Due to this, it should

connect to the database when it starts and never disconnect. The issue

is that the database system is not optimized for this kind of behavior. To

solve this, the Node.js library uses a connection pool. This means that the

library automatically handles the connections to the database and handles

connection errors. A connection pool is created using the createPool()

function. It receives an object as argument having the following properties:

•	 host – The address of the MariaDB database, for our

project the localhost address

•	 user – The username to use for the connection

Chapter 7 Data Storing and Processing

253

•	 password – The password to use for the username

•	 connectionLimit – The maximum number of

connections that are available

Every time the application wants to access the MariaDB database, it

requests a connection from the connection pool. When the application

is done with reading or writing from the database, it disconnects. From

the programmer’s point of view, this is just like using MariaDB in a PHP

program. On the other hand, the MariaDB library connection pool handles

the actual connections, starting and closing connections when needed.

Note T he createPool() function does not yet connect to the
MariaDB database, but stores the properties.

Now that we have a database connection pool setup, we can define the

data storage functions. The first function we define is energyMonitor()

(Listing 7-28). This starts a timer so that every five seconds, it queries the

OPC UA Server for the energy values and writes them into the MariaDB

database. We want to read the data from the OPC UA Server every five

seconds, even if the data has not changed. We use the read() function for

this. It is similar to the write() function, just that instead of writing data to

the OPC UA Server, it reads data from it. The function receives an array of

variables IDs and returns an array of variable values.

Listing 7-28.  The function that monitors the power values

function energyMonitor (session, deviceName)

{

 setInterval (async () => {

 let values = await session.read ([

 �{nodeId: 'ns=1;s=/SmartPower/'+deviceName+'/Energy/

voltage'},

Chapter 7 Data Storing and Processing

254

 �{nodeId: 'ns=1;s=/SmartPower/'+deviceName+'/Energy/

current'},

 �{nodeId: 'ns=1;s=/SmartPower/'+deviceName+'/Energy/

power'}

]);

 let writeValues = [];

 for (let valueData of values)

 {

 if (valueData.statusCode === opcua.StatusCodes.Good)

 {

 writeValues.push (valueData.value.value);

 }

 else

 {

 writeValues.push (null);

 }

 }

 let dbconnection = await pool.getConnection();

 if (dbconnection !== null)

 {

 try

 {

 await dbconnection.query('USE smartpower;');

 �await dbconnection.query('INSERT INTO meters

SET smartplug="'+deviceName+'", voltage=?,

current=?, power=?;', writeValues);

 }

 catch (e)

 {

 console.error ('energy: '+e.message);

 }

Chapter 7 Data Storing and Processing

255

 }

 await dbconnection.close ();

 }, 5000);

If the read is successful, we need to write the data to the database. First,

we need to get a connection from the MariaDB connection pool using the

getConnection() function. If there is a connection available, it returns it.

Otherwise, null is returned. The second step is the database selection. In

MariaDB, tables are grouped in databases. When we designed our data

model, we created a database called smartpower. To use any tables, we first

have to select the database. This is done using the USE keyword followed by

the name of the database’s name, in our case, smartpower.

The next query is one inserting data. We use the INSERT INTO query.

The INSERT syntax is shown in Listing 7-29.

Listing 7-29.  The INSERT INTO query syntax

INSERT INTO table_name SET field=value,

anotherfield=anothervalue, ...;

Tip E ach MariaDB connection has one active database at a time.
The database can be changed at any time using the USE keyword.

To send a query to the database, we use the query() function. This

receives two parameters: the query in the form of a string and an array

of values. You might ask why this is necessary; we could have written the

whole query in the string (including the values). The answer is: for security

reasons, to avoid SQL injection. This way, inside the query, we can place ?

instead of the actual values. Each ? is replaced with the escaped value from

the array.

Chapter 7 Data Storing and Processing

256

Note E scaped value means the value in a way that it can be written
as a string. For example, if the value that you want to write has ”, this
needs to be rewritten as \”.

The next function we have to define is relayMonitor() (Listing 7-30).

This function writes the status of the smart plug into the database. Here we

write one of the three values:

•	 0 – If the relay is on.

•	 1 – If the relay is off.

•	 2 – If the smart plug is not working or offline.

The difference between this table and the table storing the power

values is that this table stores only one entry for each smart plug. The fields

of the table have the following meaning:

•	 timestamp – The date and time of the latest update.

•	 smartplug – The name of the smart plug.

•	 relay – The state of the smart plug (0, 1, or 2).

Listing 7-30.  The function that monitors the relay

async function relayMonitor (session, deviceName)

{

 setInterval (async () => {

 let values = await session.read ([

 �{nodeId: 'ns=1;s=/SmartPower/'+deviceName+

'/Sysinfo/relay'},

]);

 let valueData = values[0];

 let value = 2;

Chapter 7 Data Storing and Processing

257

 if (valueData.statusCode === opcua.StatusCodes.Good)

 {

 value = valueData.value.value?0:1;

 }

 let dbconnection = await pool.getConnection();

 if (dbconnection !== null)

 {

 try

 {

 await dbconnection.query('USE smartpower;');

 �await dbconnection.query('INSERT INTO onoff

SET smartplug="'+deviceName+'", relay=? ON

DUPLICATE KEY UPDATE relay=?, timestamp=?',

[value, value, new Date()]);

 }

 catch (e)

 {

 console.error ('relay: '+e.message);

 }

 }

 await dbconnection.close ();

 }, 3000);

The relayMonitor() function queries the Sysinfo/relay variable

from the OPC UA Server for each smart plug every five seconds and

updates the row for that smart plug in the table. The query to update the

data is a bit more complex (and dependent on MariaDB). We want to use

one single query to either insert new values if there is no row for that smart

plug, or update values if there is a row for that smart plug. For this, we use

the INSERT INTO query with the parameter ON DUPLICATE KEY UPDATE.

The whole query is shown in Listing 7-31.

Chapter 7 Data Storing and Processing

258

Listing 7-31.  Insert or update a row in a table

INSERT INTO table_name VALUES field=value, ... ON DUPLICATE KEY

UPDATE field=value, ...;

This query works as follows: it tries to insert in the table a new row. If

there is another row that has the same value for the primary key field, the

insert fails (the primary key field must have a unique value for each row).

If the insert fails due to this, the ON DUPLICATE KEY UPDATE instructs

MariaDB to update the following fields’ values instead of inserting a new

row. Using this query, we make sure that there is only one row for each

smart plug (the smartplug field is the primary key) and that the row’s data

is updated every time. Were it not for this, we would have had to build a

transaction where we first tried to select the row for the smart plug, and if it

works, update the row, or if it does not work, insert a new one.

We now have all the functions necessary for reading the values from

the OPC UA Server and writing them to the MariaDB database. All that

is left to do is to modify the run() function. This connects to the OPC UA

Server and runs the two functions for writing data to the database.

Listing 7-32 displays the complete source code.

Listing 7-32.  The database component

const opcua = require('node-opcua')

const client = opcua.OPCUAClient.create();

const plugs = require ('../plugs.json');

const mariadb = require('mariadb');

const pool = mariadb.createPool({host: '192.168.0.1',

user: 'smartpowerwrite', password: 'smartpowerwrite',

connectionLimit: 5});

Chapter 7 Data Storing and Processing

259

function energyMonitor (session, deviceName)

{

 setInterval (async () => {

 let values = await session.read ([

 �{nodeId: 'ns=1;s=/SmartPower/'+deviceName+'/Energy/

voltage'},

 �{nodeId: 'ns=1;s=/SmartPower/'+deviceName+'/Energy/

current'},

 �{nodeId: 'ns=1;s=/SmartPower/'+deviceName+'/Energy/

power'}

]);

 let writeValues = [];

 for (let valueData of values)

 {

 if (valueData.statusCode === opcua.StatusCodes.Good)

 {

 writeValues.push (valueData.value.value);

 }

 else

 {

 writeValues.push (null);

 }

 }

 let dbconnection = await pool.getConnection();

 if (dbconnection !== null)

 {

 try

 {

 await dbconnection.query('USE smartpower;');

 �await dbconnection.query('INSERT INTO meters

SET smartplug="'+deviceName+'", voltage=?,

current=?, power=?;', writeValues);

 }

Chapter 7 Data Storing and Processing

260

 catch (e)

 {

 console.error ('energy: '+e.message);

 }

 }

 await dbconnection.close ();

 }, 5000);

}

async function relayMonitor (session, deviceName)

{

 setInterval (async () => {

 let values = await session.read ([

 �{nodeId: 'ns=1;s=/SmartPower/'+deviceName+'/

Sysinfo/relay'},

]);

 let valueData = values[0];

 let value = 2;

 if (valueData.statusCode === opcua.StatusCodes.Good)

 {

 value = valueData.value.value?0:1;

 }

 let dbconnection = await pool.getConnection();

 if (dbconnection !== null)

 {

 try

 {

 await dbconnection.query('USE smartpower;');

 �await dbconnection.query('INSERT INTO onoff

SET smartplug="'+deviceName+'", relay=? ON

DUPLICATE KEY UPDATE relay=?, timestamp=?',

[value, value, new Date()]);

 }

Chapter 7 Data Storing and Processing

261

 catch (e)

 {

 console.error ('relay: '+e.message);

 }

 }

 await dbconnection.close ();

 }, 3000);

}

async function run ()

{

 try

 {

 �await client.connect ('opc.tcp://localhost:4840/UA/

SmartPlugsServer');

 const session = await client.createSession();

 console.log ('database connected to Server');

 for (let plug of plugs)

 {

 energyMonitor (session, plug.name);

 relayMonitor (session, plug.name);

 }

 }

 catch (e)

 {

 console.error ('OPC UA error '+e.message);

 }

}

run ();

Chapter 7 Data Storing and Processing

262

Now, let us import the database component in the main.js file, and our

application is ready to be run. Listing 7-33 displays the complete main.js

file.

Listing 7-33.  The main.js file

// start the OPC/UA server

require ('./server');

// start the power plug driver driver

require ('./driver');

// start the database and write data

require ('./database');

All that is left is to run the project. To verify that it works, we display

the data from the meters and onoff tables using the MariaDB monitor. For

this, we use the SELECT query (Figure 7-8).

Chapter 7 Data Storing and Processing

263

In the listed tables, you can see that there are values for both of the

smart plugs in the meters table, and there is one row for each smart plug in

the onoff table.

Figure 7-8.  Querying the MariaDB tables

Chapter 7 Data Storing and Processing

264

�Summary
In this chapter, we have described how to read data from several smart

plugs and store it in a MariaDB database. As the SD card used by the

Raspberry Pi is not a reliable storage media, we have attached an external

storage system to the Raspberry Pi and have configured MariaDB to store

the databases on this external storage.

We also used a power over Ethernet HAT, so the device is not

dependent on a power source. This way, we managed to build our

application while highlighting industrial technologies.

Chapter 7 Data Storing and Processing

265© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3_8

CHAPTER 8

Data Plotting
One of the biggest advantages of IoT system is their autonomy and self-

reliance. The ambient intelligence typical of IoT systems is achieved

by removing human operators from the loop whenever possible. For

example, machine-to-machine (M2M) communications establishes direct

communications between IoT devices to exchange data, information, and

to perform actions in a synchronized manner.

While modern IoT system should be “invisible”, that is, they should not

bother the user/customer for feedback or approval, there are situations

where a dashboard or control board for interactions with human users

should be provided. In these cases, the interface to the IoT system should be

as simple and as friendly as possible in order not to confuse or discourage

the consumer from using it. As such, considerable effort is being dedicated

to the setup of data processing and plotting pipelines for IoT data.

An important part of any IoT system is data manipulation. This refers

to programming the sensors so we can gather data, process it, and extract

the information that we are interested in (e.g., the number of people in

a picture). The next step is to store that information so we can access it

anytime. Finally, we need to find a way of displaying the data to the user.

Since printing a list of values on the screen is not very intuitive and user-

friendly, we use a plotting system.

266

In the previous chapter, we have built a system that stores data about

the smart power plugs in a database, thus making the system persistent.

In this chapter, we aim to take this project further and integrate it with a

professional plotting system called Grafana.1

�Necessary Components
The setup necessary for this project is the same one as from the previous

chapter. We use the same components to store data in the MariaDB

database and then plot this data to graphs.

�Getting Started
The purpose of this chapter is to extend the application we have previously

built, so the data we collected is displayed using visual widgets. Therefore,

we start from the previously created application.

As this application has the data collection and storage in place, the

next step is to plot it using a dashboard system. For this, we use Grafana,

an open source dashboard system licensed under Apache 2.0. This means

that anyone can use it without paying royalties.

Note  While using Grafana for free is an advantage, we suggest
looking at a support plan for commercial applications.

First, we need to install Grafana. We can do this by using the docker

container system and adding MariaDB as a data source.

1�https://grafana.com

Chapter 8 Data Plotting

https://grafana.com

267

�Install Docker
The easiest way to install Grafana is by using a container image. Container

images are applications that come with all the necessary library stack to

run. For instance, if we want to install a piece of software on a computer,

it depends on some software libraries. Moreover, usually, it depends on a

Linux distribution like Ubuntu or Fedora. This causes many issues when

installing software, as some of the libraries that are installed might have

been updated since the software was compiled by its vendor. Most of the

time, system administrators have to compile the software on the computer

that they want it installed on. Containers solve this issue by shipping a

piece of software with all the necessary libraries.

Think of a container image as a virtual machine (VM), except that

the container shares the operating system (kernel) with the host. In other

words, the software that is shipped as a container uses only the operating

system, all other dependencies being inside the container. In this way,

all you need to run a Linux application that comes in a container is the

container system (to be able to start the container) and any Linux that has

containers support.

One of the most used container systems is docker. This is what we are

also using for Grafana. The first step is to install docker on the Raspberry

Pi. For this, we open a SHELL tab and run the following command: curl

-sSL https://get.docker.com | sh.

The installation takes a few minutes. After it is ready, we can run the

docker command in the shell. Usually, only the root user has access to

the container system. The next step is to add the regular user, pi, to the

docker group so we can use the docker command without running sudo.

Listing 8-1 shows how we can do this. We have to restart the shell for the

new group changes to take effect. We use the exit command and press any

key to start the shell.

Chapter 8 Data Plotting

https://get.docker.com

268

Listing 8-1.  Add the user pi to the docker group to run the docker

command without sudo

pi@raspberrypi:~ $ sudo usermod -aG docker pi

pi@raspberrypi:~ $ exit

To verify that our docker installation works, we run a simple container

that prints hello world. Listing 8-2 shows the command and the print

from hello-world.

Listing 8-2.  Test docker installation

pi@raspberrypi:~ $ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

c1eda109e4da: Pull complete

Digest: sha256:c3b4ada4687bbaa170745b3e4dd8ac3f194ca95b2d0518b4

17fb47e5879d9b5f

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working

correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the

Docker Hub.

 (arm32v7)

 3. The Docker daemon created a new container from that image

which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker

client, which sent it

 to your terminal.

Chapter 8 Data Plotting

269

To try something more ambitious, you can run an Ubuntu

container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker

ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

Note  Container images are automatically downloaded from Docker
Hub. When you want to run a container whose image is not present
locally, docker will download the image and run the container afterward.

�Install Grafana
The first step to take when installing Grafana is to create a folder where

its configuration data is stored. Grafana does not store data, it stores the

dashboards (the graphs we use and the settings for these graphs), the

data sources that are configured (credentials to MariaDB), and other

plugins that we might install. We create a folder on the external storage

(the /storage/smartdata folder). We name the folder grafana and make

the user pi its owner (Listing 8-3).

Listing 8-3.  Create the grafana folder

pi@raspberrypi:~ $ sudo mkdir /storage/smartpower/grafana

pi@raspberrypi:~ $ sudo chown pi:pi /storage/smartpower/grafana

Chapter 8 Data Plotting

270

Note I f you are not using an external storage, you can create a
folder anywhere on the Raspberry Pi.

Before we start Grafana, we have to create a connection between the

Raspberry Pi and the Grafana container. This is done by creating a private

network. For that, we use the docker network create command and

create a network called smartpowernet. We create a network just like the

one shown in Figure 8-1. The commands are illustrated in Listing 8-4.

Listing 8-4.  Create a private docker network

pi@raspberrypi:~ $ docker network create --gateway

192.168.120.1 --subnet 192.168.120.0/24 smartpowernet

ae75c049f13a03721bd33fdf05f125214ee8ca3332e3d6d2c7d9d536488e61d6

pi@raspberrypi:~ $ docker network ls

NETWORK ID NAME DRIVER SCOPE

e2ccf753cf91 bridge bridge local

1619b800af7f host host local

20d4088148c7 none null local

ae75c049f13a smartpowernet bridge local

The new network has the Raspberry Pi as a gateway to the Internet,

having the IP address 192.168.120.1, a virtual switch that is managed by

docker, and a host that is the Grafana container. The IP address of the

container is any available address in the same network.

Chapter 8 Data Plotting

271

Using the docker network ls command, we can list the available

networks. If the smartpowernet network shows up, everything worked

OK. Now, let us run Grafana (Listing 8-5). The commands that we run

perform the following operations:

•	 Download the Grafana container image from Docker

Hub.

•	 Start the image.

•	 Download two dashboard plugins (vonage-status-panel

and grafana-clock-panel).

•	 Set Grafana to run at the Raspberry Pi boot (when

docker starts).

•	 Use the /storage/smartpower/grafana folder.

•	 Use port 3000 for the web interface.

Figure 8-1.  The smartpowernet network

Chapter 8 Data Plotting

272

Listing 8-5.  Install and run Grafana with plugins and storage space

pi@raspberrypi:~ $ sudo docker run --user=$UID -d --restart

always -p 3000:3000 --name=grafana -e "GF_SERVER_ROOT_

URL=http://192.168.1.47" -e "GF_INSTALL_PLUGINS=vonage-

status-panel,grafana-clock-panel" -e "GF_SECURITY_ADMIN_

PASSWORD=secret" --net smartpowernet -v /storage/smartpower/

grafana:/var/lib/grafana grafana/grafana:6.3.6

Unable to find image 'grafana/grafana:6.3.6' locally

6.3.6: Pulling from grafana/grafana

245dbad35e84: Pull complete

bc1d94e06384: Pull complete

1578a1c7d8ec: Pull complete

d5d560aa8fbb: Pull complete

525bba436572: Pull complete

b5d3581c6846: Pull complete

11664e74e734: Pull complete

2b25cb5ab71f: Pull complete

70952cf6efd0: Pull complete

Digest: sha256:218ba67bfac261a71abde7cb306727edaa7d9a595bd70ceb

5a644ea3dfb21229

Status: Downloaded newer image for grafana/grafana:6.3.6

78e3616b8df91d2e088e23a931a858a5fef6be3f677a2d8781e4a761edb9045d

pi@raspberrypi:~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

78e3616b8df9 grafana/grafana:6.3.6 "/run.sh" 24

seconds ago Up 6 seconds 0.0.0.0:3000->3000/tcp grafana

To verify if Grafana is working, we use the docker ps command. This

displays all the running containers.

Chapter 8 Data Plotting

273

Note P lease replace the items in bold in Listing 8-5 with your
parameters: the IP address of your Raspberry Pi, a desired password
(ours is the word secret), and the folder to store Grafana’s data.

We can log in into Grafana’s UI and start building the dashboard.

We use a web browser and go to the http://192.168.1.47:3000 address.

Please replace the IP with your Raspberry Pi’s IP address. A login screen

similar to the one in Figure 8-2 should appear.

Note  Use the admin username and the password that you used
when starting Grafana. In our example, the password is the word
secret.

Figure 8-2.  Grafana login screen

Chapter 8 Data Plotting

http://192.168.1.47:3000

274

�Add the MariaDB Data Source
The next step is to connect MariaDB to Grafana. First, we configure

MariaDB to listen to the smartpowernet network interface. By default,

MariaDB is listening for connections only on the 127.0.0.1 interface, to

disallow any connections from outside. Thus, we have to edit the /etc/
mysql/mariadb.conf.d/50-server.cnf file and change the bind-address

property to 192.168.120.1 (Listing 8-6). Save the file with the new value

and restart MariaDB using the following shell command: sudo systemctl

start mariadb.

Listing 8-6.  MariaDB listen address

Instead of skip-networking the default is now to #listen only on

localhost which is more compatible and is not less #secure.

bind-address = 192.168.120.1

Note E ven if we changed the IP address that MariaDB listens on to
a network address different from localhost, connections from outside
the Raspberry Pi do not work, as the new IP address is on a virtual
network inside the Raspberry Pi.

The next step is to create a user for Grafana. This user has to be able

to read data from the smartpower database tables. We use the CREATE

USER and GRANT commands, similar to the way we created the user for the

database component (Listing 8-7).

Chapter 8 Data Plotting

275

Listing 8-7.  Create the smartpowerread user and grant the SELECT

right

MariaDB [(none)]> USE smartpower;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

MariaDB [smartpower]> CREATE USER smartpowerread IDENTIFIED BY

'smartpowerread';

Query OK, 0 rows affected (0.001 sec)

MariaDB [smartpower]> GRANT SELECT ON smartpower.* TO

smartpowerread;

Query OK, 0 rows affected (0.001 sec)

Now that MariaDB is accessible from within the Grafana container, let

us set up the data source. After logging in to Grafana, you should get the

Home Dashboard. Go to the Add data source option and select MySQL as a

new data source. Figure 8-3 shows the Home Dashboard.

Note  MariaDB is compatible with MySQL.

Chapter 8 Data Plotting

276

In the data source options, we fill out the hostname with 192.168.120.1,

the database name with smartpower, the username with smartpowerread,

and the password with smartpowerread (Figure 8-4). To save the data

source, scroll to the bottom, and click Save & Test. If everything is OK, there

should be a message showing Database Connection OK.

Figure 8-3.  Grafana home dashboard

Figure 8-4.  Grafana MariaDB data source setup

Chapter 8 Data Plotting

277

There is another step we have to take, that is to change the host address

of MariaDB inside our project’s database component. Go to database/
index.js and change the MariaDB connection pool address from 127.0.0.1

to 192.168.120.1. We have to restart our project.

�The Dashboard
Now, it is time to design the dashboard. For this, we go to the Home

Dashboard by clicking the upper left icon in Grafana. From the Home

Dashboard, we select New dashboard. This creates an empty dashboard

that we can edit (Figure 8-5).

Let us go over the interface of the new dashboard. In the top left corner,

we have the name, in this case, New dashboard. On the top right side, we

have the following buttons:

•	 Add panel – This adds a panel similar to the one

displayed in the new dashboard.

Figure 8-5.  Grafana empty dashboard

Chapter 8 Data Plotting

278

•	 Save dashboard – This allows us to save any changes

that we make to the dashboard.

•	 Dashboard settings – This allows us to set some

properties of the dashboard, like the name or the data

refresh rate (the interval at which new data is read from

the database and displayed on the dashboard).

•	 Cycle view mode – This allows us to change the way the

dashboard is displayed, cycling between edit mode,

viewing mode, and full-screen mode.

•	 A dropdown that allows us to select the time span in

which to display the data.

•	 A dropdown that allows us to select the data refresh

rate quickly.

Now let us add our first widget. We add the clock. For this, we select

Choose Visualization from the New Panel. This takes us to the widget

screen shown in Figure 8-6. On the left side, there are three round buttons:

•	 Queries – This allows us to create a database query.

•	 Visualization – This allows us to select the widget type

and set its properties (this is the button that is selected

in Figure 8-6).

•	 General – This allows us to set properties related to the

panel, for example, its name.

Note  Grafana calls the graphs widgets.

Chapter 8 Data Plotting

279

In the Visualization tab, we select the Clock widget. This widget does

not depend on any data from the database; it just displays the current

time. In the General tab, we can change the name of the panel to Time.

To go back to the dashboard, we click the back arrow shown next to the

dashboard title (upper left corner).

In the dashboard page, we can now resize the clock panel so that it

takes less space. To resize a panel, click the lower right corner and start

dragging.

Now that we have our first widget, let us save the dashboard; otherwise,

it will be lost whenever Grafana (or the Raspberry Pi) is restarted. We just

have to click the Save dashboard button in the upper right corner and give

the dashboard a name. We use SmartPower.

The next step is to add the instant power values. This means adding

a gauge for each smart plug that displays the voltage, current, and power.

For this, we add a new panel and select Add query. Now we have to add a

database query to retrieve data. For this widget, we want to get the voltage

value from the meters table. Grafana allows us to create the query in a

graphic editor shown in Figure 8-7. We have to complete the fields shown

in Table 8-1.

Figure 8-6.  New widget screen with the clock widget type selected

Chapter 8 Data Plotting

280

Figure 8-7.  Create the SQL query

Table 8-1.  The Grafana query

Field Description Value

From The name of the table that we want to use. meters

Time

column

The name of the field in the selected table that stores the

timestamp.

timestamp

Metric

column

A widget can display several items. Grafana supposes that all

the values are stored in one single table that has at least two

fields: one storing the name of the value and one storing the

actual value. In our case, we store all the three values in one

row (voltage, current, and power) but have one field storing

the name of the smart plug where the values come from. We

use that field.

smartplug

Select We can add several fields with values. In our case, we add the

voltage field.

voltage

Chapter 8 Data Plotting

281

Next, let us select the widget type. In the Visualization tab, we can

select Gauge, as shown in Figure 8-8. For this widget, we have to set several

properties:

•	 Calc – The way the displayed value is calculated; we use

Last to display the most recent value.

•	 Unit – The units displayed next to the value, we use Volt;

•	 Min – The minimum value; we use 0.

•	 Max – The maximum value; we use 250 (in Europe the

power is at 230V; use 140V if you are in the United States).

•	 Thresholds – This allows us to set color ranges; set the

red color at values higher than 240 (other value should

be used for the United States).

The next step is to select the General tab and set the panel’s name to

Voltage. We can now click the back arrow and go back to the dashboard.

Feel free to move the new panel around and resize it.

Figure 8-8.  The gauge widget

Chapter 8 Data Plotting

282

To make sure that our dashboard will not be deleted when the

Raspberry Pi restarts, we click Save dashboard.

Now, in a similar manner, we can add widgets for the current values

and power values, the only difference being the field that is selected for the

query, the range values, and the unit.

Similarly, we can add graphs that show the variation in time for the

power values. Instead of selecting a gauge as visualization, we select a

graph. All the other parameters are similar.

There is another important widget that we want to add: the smart

plug’s status. For each smart plug, we add a widget that displays a green

square if the smart plug is on, an orange square if the smart plug is off, and

a red square if the smart plug is not available or offline. We go over the

steps for adding the first widget, the others being similar.

First, we add a new panel and select Add Query. We select the onoff

table; the metric field is smartplug, and the value field is relay. The query

is shown in Figure 8-9. In the Visualization tab, we select the Status Panel

(Figure 8-10). This has the following properties:

•	 Alias – The name of the smart plug to display.

•	 Threshold – The values at which the status panel

changes colors:

•	 At values greater or equal to 1 it displays orange.

•	 At values greater or equal to 2 it displays red.

•	 At values lower than 1 it displays green.

•	 Display Alias – We instruct the status panel to always

display the name of the smart plug.

•	 Display Value – We instruct the status panel to always

display the value of the smart plug status (0, 1, or 2).

Chapter 8 Data Plotting

283

In the General tab, we set the name of the panel to the name of the

smart plug. Next, we click the back arrow and position and resize the status

panel on the dashboard. The last step is to save the dashboard.

Figure 8-9.  The relay query

Figure 8-10.  The status panel

Chapter 8 Data Plotting

284

Note R epeat the steps described earlier for every smart plug.

The last step we have to take is to set the dashboard’s refresh rate. This

is the interval at which the dashboard reads new data from the database.

By default, this interval is set to Off, which means you have to refresh it

manually. To set a new refresh rate, we click the dropdown in the upper

right corner, just as it is shown in Figure 8-11. For a small value, the

data updates more often, but the processing power consumption of the

Raspberry Pi is higher. We suggest setting the refresh rate depending on

the usage of the dashboard.

Figure 8-11.  The refresh rate

Chapter 8 Data Plotting

285

�Summary
In this chapter, we have extended the previously created application so

we can display data using visual graphs. For this, we installed the Grafana

dashboard software using docker containers and set it up to use MariaDB.

We have created the dashboard shown in Figure 8-12 to monitor the

smart plug power values and status.

The system we developed is an appropriate option to monitor the

power consumption in a small factory or office environment.

Figure 8-12.  The dashboard of the smart plug monitoring system

Chapter 8 Data Plotting

287© Ioana Culic; Alexandru Radovici; Cristian Rusu 2020
I. Culic et al., Commercial and Industrial Internet of Things Applications with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5296-3

Index

A
Advertisement system

advantages, 125
camera module

configuration, 131, 132
connection, 129, 130

cognitive services
account type selection, 138
authentication keys, 139
platform window, 137
retrieve account keys, 138

components, 127, 128
content personalization,

142–145
Google service account

(see Google Drive)
monitor system

motion sensor, 156
PIR connection

schematic, 157
picture process

Azure package
header, 140

raspistill command, 141
update source pictures, 145
USB camera connection, 155, 156

Application-level protocols
CoAP, 27
lower-level protocols, 26
MQTT packets, 27

B
Bluetooth Low Energy (BLE), 25

C
Communications protocols

application-level protocols
CoAP, 27
lower-level protocols, 26
MQTT packets, 27

low-level data transmission
(see Low-level data
transmission protocols)

Constraint Application Protocol
(CoAP), 27

D
Data storage/processing

database
components, 249
database component, 258–261

https://doi.org/10.1007/978-1-4842-5296-3

288

INSERT INTO query
syntax, 255

INSERT/UPDATE/SELECT
command, 250

insert/update option, 258
MariaDB monitor, 249
SELECT query, 262, 263
setup connection, 252
table meaning, 256

external storage system, 211
IoT systems, 209
MariaDB-store data

database systems, 211, 212
data model setup, 223–227
external storage setup,

214–223
installation, 213, 214

OPC UA data model, 229
Raspberry Pi PoE HAT, 210
smart plug driver

data source code, 238–242
properties, 236

smart plugs
plugs.json, 229
software architecture, 228

Digital signage system, 69
advantages, 70
building application

Electron, 72
GTK+/Qt/web-based

libraries, 71
components, 70, 71

modern electronics/software
components, 70

pollution level, 69
Docker installation, 267–269

E, F
Edge computing

advantages of, 17
cloud processing/storage

capabilities, 16
Raspberry Pi

device model, 17–19
programmable logic

controller, 20–22
sensors/connected devices, 17

Electronic Logging Device
(ELD/E-Log), 16

Ethernet/IP, 24

G, H
General Data Protection

Regulation (GDPR), 126
Google Drive

authentication key, 147
integrate application, 150

download/store picture
contents, 152

interaction, 151
retrieves pictures, 152–154

key creation, 148
project creation, 146

Data storage/processing (cont.)

INDEX

289

service account, 145, 147
upload files

files, 148
get file ID, 150
share image file, 149
spreadsheet, 150

Grafana
dashboard

buttons, 277
empty dashboard, 277
gauge widget, 281
properties, 281, 282
query option, 280
refresh rate, 284
relay query, 283
SQL query

creation, 279, 280
status panel, 283
Visualization tab, 278, 279
widget screen, 279

folder creation, 269
home dashboard, 276
installation, 266, 269
login screen, 273
MariaDB, 274–277
operations, 271
plugins/storage space, 272
private docker network, 270
smart plug monitoring

system, 285
smartpowernet

network, 271
Graphical user interface (GUI), 29

I, J, K
Industrial Internet of Things (IIoT)

certification process, 12
characteristics of, 8
commercial/industrial

environments, 14–16
digital twins, 14
edge intelligence, 15
description, 3
operational efficiency, 9
prototyping system, 12–15
requirements, 9
SCADA systems, 10, 11

Industrial system
advantages, 164
architecture, 165–167
components, 166
OPC UA server (see Open Platform

Communication – Unified
Architecture (OPC UA))

power plug driver
energy values, 194–200
error checking, 197
monitor variable

parameters, 204
project structure, 176
smart power GUI, 205, 206

sensing/monitoring, 163
smart plug system

architecture, 168
Kasa phone app, 169
Python SDK, 169–175

INDEX

290

smart power plug system
architecture, 167

Integrated development
environment (IDE), 50

Interface platform, 30
libraries, 31
REST API, 31, 32

Inter-Integrated
Circuit (I2C/I2C), 23

get online data, 87
Internet Engineering Task Force

(IETF), 2
Internet of Things (IoT)

architecture, 6–8
building system, 5
characteristics of, 3–6
commercial/industrial

systems, 1
communications

protocols, 22–29
data collection, 4
design components, 45, 46
dynamism, 4
edge computing, 16–21
edge devices, 7
heterogeneity, 4
IIoT platforms (see Industrial

Internet of Things (IIoT))
interfacing mechanism, 28–32
requirement of, 6
sensors/actuators, 7
software, 32–39

L
LoRa protocol design, 25
Low-level data transmission

protocols
commercial/industrial

systems, 25
inter-board protocols, 24, 25
intra-board wired

protocols, 22–24
wired connections, 22
wireless communications, 22

M, N
MariaDB

external storage setup
database

directory, 222, 223
empty database, 222
folder layout, 221
formatting data, 218
hard drive/SSD, 214
mount option, 219
partition creation, 216, 217
partition table creation, 216
Raspberry Pi mounted

drives, 220
store data

CREATE INDEX
command, 227

DESCRIBE command, 226
index creation, 227
meters table properties, 226

Industrial system (cont.)

INDEX

291

metrics table creation, 225
onoff table creation, 227
smartpower

database, 224
table structure, 225

MariaDB data source, 274
database component, 274
home dashboard, 276
SELECT, 275
shell command, 274
source setup, 276

Modbus protocol, 27
MQ Telemetry Transport

(MQTT), 27

O
OPC UA data model, 230

ProSys client display, 234
server source code, 231–233
template, 231

Open Platform Communication –
Unified Architecture (OPC
UA), 28, 165

architecture, 166
commander, 189–191
data model editor, 182
data types, 183, 184
node-opcua, 181
ProSys OPC UA client, 191, 192
server, 185–189

data model, 186, 189
variables, 184, 185

P, Q
Physical controls, 30
Plotting system

components, 266
data manipulation, 265
Docker installation, 267–269
Grafana (see Grafana)

Power over Ethernet (PoE), 210
Profinet, 25
Programmable logic controllers

(PLC), 20–22

R
Radio-frequency identification

(RFID), 15
Raspberry Pi

camera module, 130, 131
Compute Module 3+, 18
deploy application

LED blinking, 65
onoff library, 65
package manager location, 64

edge computing, 17–19
Model B, 48–51
programmable logic

controller, 20–22
software characteristics, 32
Wyliodrin STUDIO

(see Wyliodrin STUDIO)
Real-time response, 33
Representational state transfer

(REST) API, 31, 32

INDEX

292

S, T
Serial Peripheral Interface (SPI), 23
Soda dispenser system

application, 111
pins setup, 111, 112

components, 96, 97
dashboard creation

live dashboard, 123
tank widget properties, 122
variables, 120, 121

external module, 107, 108
historical data, 96
Internet connection, 113

components, 113
dashboard creation, 120–123
liquid amount, 117–120
ubidots account, 114, 115
widget values, 115–117

modules, 113
pump circuit schematic, 109, 110
UI (see User interface (UI))
vending machine, 95
widget values

characteristics, 116
elements, 115
request message, 116
ubidots configuration, 116

Software
characteristics of, 32–34
developing applications

desktop/web applications, 34
development

environments, 36–38

hardware characteristics, 34
programming languages,

35, 36
user interface, 34
Wyliodrin STUDIO, 38

Supervisory Control and Data
Acquisition (SCADA), 10, 11

U, V
Universal Asynchronous Receiver/

Transmitter (UART), 23
User interface (UI)

commercial products, 29
touchscreen, 29
web application, 29

W, X, Y
Wyliodrin STUDIO

browser version
boot partition, 59
device connection, 58–60
structure information, 58
wyliodrin.json file, 57, 59

connection process
browser version, 57–60
credentials suggestion, 57
Etcher download, 54
Ethernet connection, 55
flashing process, 55
local version, 56, 57
manual setup, 55
operating system, 53

INDEX

293

requirement, 53
web site, 54

embedded devices, 50
integrated development

environment, 50
interface, 60
local version, 51
operations, 60
running options

AppImage file, 52

browser, 53
local version/web version, 52

software development, 38
stores projects, 51
tab options, 61
web version, 51

Z
Zigbee protocol, 26

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Internet of Things Systems Overview
	What Is the Industrial IoT?
	The IoT Characteristics
	The IoT Architecture

	The IIoT Systems
	About SCADA
	From Prototyping to Industrial Systems
	Specific IIoT Characteristics

	Edge Computing
	The Raspberry Pi As an Edge Device
	The Raspberry Pi in Industry

	IoT Communication Protocols
	Low-Level Data Transmission Protocols
	Application-Level Protocols

	Interfacing with the IoT System
	User Interface
	Touchscreen
	Web Application

	Physical Controls
	Platform Interface
	Libraries
	REST API

	Software for IoT Systems
	Software Characteristics
	Software Development
	Programming Languages
	Development Environments
	Wyliodrin STUDIO

	Summary
	Further Reading

	Chapter 2: Getting Started with the Raspberry Pi and Wyliodrin STUDIO
	About the Raspberry Pi
	About Wyliodrin STUDIO
	Run Wyliodrin STUDIO
	Run Wyliodrin STUDIO Locally
	Run Wyliodrin STUDIO in the Browser

	Connect the Raspberry Pi to Wyliodrin STUDIO
	Manual Setup
	Connect the Raspberry Pi to the Local Version of Wyliodrin STUDIO
	Connect the Raspberry Pi to Browser Version of Wyliodrin STUDIO

	Overview of Wyliodrin STUDIO
	Deploy Applications on the Raspberry Pi
	Summary

	Chapter 3: Smart Digital Signage System
	Necessary Components
	The Application Architecture
	Electron

	The Application
	Source Code
	The index.html File
	The main.js File

	Installing the Necessary Libraries
	Run the Application
	Connect to the Internet
	Application Architecture
	Source Files

	Arrange the Interface

	Summary

	Chapter 4: Smart Soda Dispenser System
	Necessary Components
	Interactive Soda Dispenser
	The main.js File
	The User Interface
	Display Beverages
	Select Beverage
	Pour Drink
	Style the User Interface

	Install Required Modules

	Building the Dispenser
	The Schematic
	The Application
	Pins Setup
	Controlling the Relay

	Installing the Modules

	Connecting the System to the Internet
	Set Up Ubidots Account
	Initialize Widget Values
	Compute the Liquid Amount
	Create the Dashboard

	Summary

	Chapter 5: Smart Advertising System
	Necessary Components
	Gathering Surrounding Information
	Connect the Camera Module
	Enable the Camera
	The Code
	The index.html File
	The app.js File

	Personalize the Content
	Set Up Microsoft Cognitive Services Account
	Process the Picture
	Personalize the Content

	Remotely Update Source Pictures
	Create a Google Service Account
	Upload Files on Google Drive
	Integrate Google Drive API in the Application

	Connect USB Camera
	Monitor the Environment
	Summary

	Chapter 6: Smart Metering System Using an Industrial Server
	Industrial Applications Architecture
	Necessary Components
	The Smart Power Plug Interface
	Set Up the HS110 Smart Power Plug Using the Kasa App
	Set Up the HS110 Smart Power Plug Using the Python SDK

	Write the Power Plug Driver
	The OPC UA Server
	OPC UA Variables
	The OPC UA Server
	OPC UA Commander
	ProSys OPC UA Client

	The Smart Power Plug Driver
	Write the Energy Values
	Switch the Power Plug On and Off

	Putting It All Together
	Summary

	Chapter 7: Data Storing and Processing
	Necessary Components
	Use MariaDB to Store Data
	Install MariaDB
	External Storage Setup
	Set Up the Data Model

	Upgrade to Use Multiple Smart Plugs
	The OPC UA Data Model
	The New Smart Plug Driver

	Store the Information in the Database
	Summary

	Chapter 8: Data Plotting
	Necessary Components
	Getting Started
	Install Docker
	Install Grafana
	Add the MariaDB Data Source
	The Dashboard

	Summary

	Index

